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Who reads RFCs ?

● Desperate network engineers 
– why is that session « stuck in ACTIVE »
– why are my routers now crashing (ASN4)

● Bleeding edge engineers
– what is FlowSpec ?

● Curious Engineers
– what if I changed the HoldTime value to 3 ??

● MAD people
– wanting to write their own software ← I am here ..
– mostly SIP developers nowdays



  

A new application why ? 

● Announce our service IP (/32)
– SMTP, MX, POP, IMAP, WEBMAIL, AUTH DNS, ... 

● Others exist but .... 
– OpenBGPD – great but no official support on Linux

– BIRD – good but no package for all our Linux distros

– Quagga – Cisco configuration format (pain)

– bgpfeeder, bgpsimple, pybgp – no IPv6

● Wanted ....
– easy installation (python always installed, nothing else needed)

– familiar and simple configuration

– integrate with our code base (suspension, IWF filtering, etc.)



  

BGP4 – Main RFCs

✔ RFC 4271
– A Border Gateway Protocol 4 (BGP-4)
– Obsoletes: 1771

✔ RFC 5492
– Capabilities Advertisement with BGP-4
– Obsoletes: 3392, 2842

✗ RFC 2385
– Protection of BGP Sessions via the TCP MD5 Signature

I can't implement it, the Python socket module does not 
export TCP_MD5_AUTH



  

BGP4 – Common RFCs

✗ RFC 3107
– Carrying Label Information in BGP-4

✔ RFC 4760 (and RFC 2545)
– Multiprotocol Extensions for BGP-4
– Obsoletes: 2858

✗ RFC 4893
– BGP Support for Four-octet AS Number Space



  

BGP4 – Less common RFCs

✔ RFC 4724
– Graceful Restart Mechanism for BGP

✗ RFC 4360
– BGP Extended Communities Attribute

✗ RFC 5575
– Dissemination of Flow Specification Rules

➔ Find all BGP-4 related RFCs
– http://www.bgp4.as/rfc

http://www.bgp4.as/rfc


  

Packets

● Very few types
● OPEN – to negociate a BGP4 connection
● NOTIFICATION – to report issues to the peer
● KEEPALIVE – to not wait for a TCP timeout
● UPDATE – to exchange routes

● More defined by other RFCs

● RFC 2918 – ROUTE REFRESH
● …



  

Steps of a BGP session

Opening sequence of packets

Configured but not ready (IDLE)

Configured and ready (ACTIVE)

TCP connection (CONNECT)

→ OPEN (OPENSENT)

← OPEN

← KEEPALIVE (OPENCONFIRM)

→ KEEPALIVE (ESTABLISHED)



  

Conversation

exchange of routes (if needed)..

→ UPDATE ?

← UPDATE ?

Routes are not re-sent if no change occurs

(unless both routers support route refresh)

And start to send each other messages to detect 
dead peers

→ KEEPALIVE

← KEEPALIVE



  

Message

● Marker – 16 bytes
● legacy header from RFC 1105

● Marker (2 bytes), Length (2 bytes), version (1 byte)
● Type (1 byte), HoldTime (1 Byte)

● kept but blanked 
● 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

● Length of content – 1 short
● Type of Message – 1 byte

● OPEN 0x01
● UPDATE 0x02
● NOTIFICATION 0x04
● KEEPALIVE 0x08



  

OPEN

● Version – 1 byte
● ASN – 1 short
● HoldTime – 1 short
● BGP Identifier – 4 bytes
● Optional Parameter Length – 1 Byte
● Optional Parameters – LEN bytes

– initially for optional authentification (deprecated)
– now for capabilities allowing protocol extension



  

OPEN

● HOLDTIME
– hearbeat interval

– negotiated as the lower holdtime between both OPEN
● You can cause lots of BGP traffic forcing a low value

– default depends on vendor
● Juniper   90
● Cisco 180

– can not be lower than 3 (as KeepAlive is HoldTime / 3)

– connection MAY be rejected based on KEEPALIVE value

● BGP IDENTIFIER

– unique 32 bit number
● not really an IP but set to the IP used for the connection (in IPv4)

– often called Router-ID

– used to know which connection the router must keep



  

CAPABILITIES

● Unknown capabilities received are ignored
● A capability can be sent multiple times with 

different values
– For example to indicate support for multiple protocols

● Capabilities Format
● Code 1 byte
● Length 1 byte
● Value LEN byte(s)



  

CAPABILITIES

● http://www.iana.org/assignments/capability-codes/
● RESERVED 0x00
● MULTIPROTOCOL_EXTENSIONS 0x01 [RFC2858]
● ROUTE_REFRESH 0x02 [RFC2918]
● OUTBOUND_ROUTE_FILTERING 0x03 [RFC5291]
● MULTIPLE_ROUTES 0x04 [RFC3107]
● EXTENDED_NEXT_HOP 0x05 [RFC5549]
● Unassigned 0x06 - 0x3F (63)
● GRACEFUL_RESTART 0x40 [RFC4724]
● FOUR_BYTES_ASN 0x41 [RFC4893]
● Deprecated 0x42 (66) 
● DYNAMIC_CAPABILITY 0x43 [Chen]
● MULTISESSION_BGP 0x44 [Appanna]
● ADD_PATH 0x45 [draft-ietf-idr-add-paths]
● Unassigned 0x46 (70) - 0x7F (127)
● Reserved for Private Use 0x80 (128) – 0xFF (255) [RFC5492]
● CISCO_ROUTE_REFRESH 0x80

– Can only find reference to this in the router logs



  

CAPABILITIES

● AFI - Address Family Identifiers
● http://www.iana.org/assignments/address-family-numbers/
● IPv4 – 0x01
● IPv6 – 0x02

● SAFI - Subsequent AFI
● http://www.iana.org/assignments/safi-namespace
● SAFI Unicast – 0x01
● SAFI Multicast – 0x02
● MPLS-labeled VPN address – 0x80

http://www.iana.org/assignments/address-family-numbers/
http://www.iana.org/assignments/safi-namespace


  

CAPABILITIES

● Multiprotocol extension
● OPEN with family (AFI/SAFI) of extra protocols supported

– one capability per pair supported
● http://www.iana.org/assignments/address-family-numbers/
● http://www.iana.org/assignments/safi-namespace

● Graceful Restart
● let the speaker know 

– if the session is from a restart
– how long to wait before dropping stale routes 

● AFI/SAFI for which GR is supported

http://www.iana.org/assignments/address-family-numbers/
http://www.iana.org/assignments/safi-namespace


  

  OPEN Message
      Marker: 16 bytes
      Length: 45 bytes
      Type: OPEN Message (1)
      Version: 4
      My AS: 100
      Hold time: 180
      BGP identifier: 1.1.1.1
      Optional parameters length: 16 bytes
      Optional parameters
          Capabilities Advertisement (8 bytes)
              Parameter type: Capabilities (2)
              Parameter length: 6 bytes
              Multiprotocol extensions capability (6 bytes)
                  Capability code: Multiprotocol extensions capability (1)
                  Capability length: 4 bytes
                  Capability value
                      Address family identifier: IPv4 (1)
                      Reserved: 1 byte
                      Subsequent address family identifier: Unicast (1)
          Capabilities Advertisement (4 bytes)
              Parameter type: Capabilities (2)
              Parameter length: 2 bytes
              Route refresh capability (2 bytes)
                  Capability code: Route refresh capability (128)
                  Capability length: 0 bytes
          Capabilities Advertisement (4 bytes)
              Parameter type: Capabilities (2)
              Parameter length: 2 bytes
              Route refresh capability (2 bytes)
                  Capability code: Route refresh capability (2)
                  Capability length: 0 bytes

OPEN parsed



  

NOTIFICATION

● Format
● Error code 1 byte
● Error subcode 1 byte
● Data variable

● Error codes
1 – Message header error 4 – Hold timer expired

2 – OPEN message error 5 – State machine error

3 – UPDATE message error 6 – Cease

● Error Sub Code
● too many to list, see RFC 4271 section 4.5

● Data is a human readeable string
● its length is calculated from the length of the message



  

KEEPALIVE

● No content, just the BGP Header
● Heartbeat message
● If no message is seen during a HoldTime 

period, the session must be torn down
● KeepAliveTime = HoldTime / 3
● « a reasonable maximum time »
● « no more than once a second »

● KEEPALIVE message should be sent every 
KeepAlive time if no UPDATE was generated to 
make sure no Timeout occurs



  

UPDATE

● Used to update remote RIB

● For IPv4 Nice and simple
● routes to remove (in NLRI format)
● characteristics of the new routes
● new routes (in NLRI format)

● Format
● Withdrawn Routes Length 2 bytes
● Withdrawn Routes LEN above bytes
● Total Path Attribute Length 2 bytes
● Path Attributes LEN above bytes
● NLRI(s) what is left

● Space efficient
● Maximum message size is 4096



  

NLRI

● Network Layer Reachability Information
● Fancy RFC name for a prefix
● Netmask as a character => /32 byte of value 32
● Followed by only the necessary bytes of the IP address

● Examples

● 10.0.0.0/8 0x08 0x10
● 192.0.2.0/24 0x18 0xC0 0x00 0x02
● 192.0.2.1/29 0x1D 0xC0 0x00 0x02 0x01
● 0.0.0.0/0 0x00



  

Path Attributes

● Store routes meta-data
– Transitive : Router must relay the Attribute

● Unknown Transitive SHOULD be accepted
● Unknown non-transitive MUST be ignored

– Optional : Understanding of this attribute is optional

– Mandatory : Must be present (or Discretionary)
● Well known MUST be transitive
● MUST be supported by every implementation

– Partial : Do we know this attribute
● Once set as unknown the value stays set

– Every route in the path can add some optional transitive attribute

● Well Known Attributes (minimum implementation)
– Mandatory ORIGIN, AS_PATH, NEXT_HOP

– Discretionary LOCAL_PREF, ATOMIC_AGGREGATE



  

Path Attributes

● Best known attributes
● CODE NAME FLAGS Number Other

● 0x01 ORIGIN Mandatory, Transitive Unique

● 0x02 AS-PATH Mandatory, Transitive Unique

● 0x03 NEXT_HOP Mandatory, Transitive Unique

● 0x04 MED Optional Unique EBGP only

● 0x05 LOCALPREF Discretionary,Transitive Unique IBGP only

● 0x06 ATOMIC_AGGREGATE Discretionary, Transitive

● 0x07 AGGREGATOR Optional Unique

● 0x08 COMMUNITIES Optional,Transitive Unique

● 0x09 ORGINATOR_ID, 0x0A CLUSTER_LIST 

● 0x0E MP REACH NLRI Optional,Transitive Multiple

● 0x0F MP UNREACH NLRI Optional,Transitive Multiple

● Selection Algorithm order
● highest LOCAL_PREF – shorter AS_PATH – lower ORIGIN – lowest MED – EBGP over IBGP



  

Path Attributes

● Attribute Flag 1 byte
● Flags description

– 0x10 EXTENDED_LENGTH The length is two bytes and not one

– 0x20 PARTIAL do we understand what is relaid

– 0x40 TRANSITIVE order to pass the attribute even if non known

– 0x80 OPTIONAL zero for  Well Known Attributes

● Sum of all the flags (some would say binary OR)

● Attribute Code 1 byte

● Length 1 byte or 1 short

● Attribute Value LEN Above
● content of the Attribute dependant on the attribute code



  

ORIGIN

● Attribute Value
● 1 byte with the origin

– 0x00 IGP
Network Layer Reachability Information is interior to the 
originating AS

– 0x01 EGP

Network Layer Reachability Information learned via the 
EGP protocol [RFC904]

– 0x02 INCOMPLETE

Network Layer Reachability Information learned by some 
other means



  

AS_PATH

● Attribute Value
● Sequence of one or multiple path segments

– path segment type 1 byte
● 0x01 AS_SET 

– unordered set of ASes
– Included when performing an aggregation

● 0x02 AS_SEQUENCE
– ordered set of ASes
– Used path the path vector algorithm

– path segment  length 1 byte
– length, path segment value ABOVE LEN * 2 byte(s)

● list of short integer



  

NEXT_HOP

● Attribute Value
– IP 4 bytes

● inet_aton representation of the Ipv4

● Well Known Attribute
– in RFC 4271

● Does not always need to be present
– in RFC 4760



  

LOCAL_PREF, MED, ...

● Attribute Value
● long integer 4 bytes

● The other Attributes are waiting for you in RFC 4271



  

  UPDATE Message (I removed a MED attribute and removed a route to fit the slide so the sizes are off)
      Marker: 16 bytes
      Length: 52 bytes 
      Type: UPDATE Message (2)
      Unfeasible routes length: 0 bytes
      Total path attribute length: 25 bytes
      Path attributes
          ORIGIN: IGP (4 bytes)
              Flags: 0x40 (Well-known, Transitive, Complete)
                  0... .... = Well-known
                  .1.. .... = Transitive
                  ..0. .... = Complete
                  ...0 .... = Regular length
              Type code: ORIGIN (1)
              Length: 1 byte
              Origin: IGP (0)
          AS_PATH: 100 (7 bytes)
              Flags: 0x40 (Well-known, Transitive, Complete)
                  0... .... = Well-known
                  .1.. .... = Transitive
                  ..0. .... = Complete
                  ...0 .... = Regular length
              Type code: AS_PATH (2)
              Length: 4 bytes
              AS path: 100
                  AS path segment: 100
                      Path segment type: AS_SEQUENCE (2)
                      Path segment length: 1 AS
                      Path segment value: 100
          NEXT_HOP: 10.0.0.1 (7 bytes)
              Flags: 0x40 (Well-known, Transitive, Complete)
                  0... .... = Well-known
                  .1.. .... = Transitive
                  ..0. .... = Complete
                  ...0 .... = Regular length
              Type code: NEXT_HOP (3)
              Length: 4 bytes
              Next hop: 10.0.0.1 (10.0.0.1)
      Network layer reachability information: 4 bytes
          50.0.0.0/24
              NLRI prefix length: 24
              NLRI prefix: 50.0.0.0 (50.0.0.0)

UPDATE parsed



  

Path Attribute and IPv6

● Announcing an IPv6 route
● The AFI/SAFI family pair must have been received 

in the OPEN CAPABILITY
● Special case of MultiProcol BGP

– Create a UPDATE
● with no withdrawal
● with no NLRI
● with an ORIGIN and AS_PATH (NEXT_HOP ignored)
● If any, one MP UNREACH NLRI with all the routes to remove
● If any, one MP REACH NRI with all the routes to add

– Only takes a few bytes more to use MP BGP for IPv4

● MP BGP is an elegant solution to avoid BGP5



  

MP_UNREACH_NLRI

● Format
– AFI 2 bytes
– SAFI 1 byte
– Withdrawn NLRIs remaining data

● To send IPv6 routes
● The AFI/SAFI family pair must have been received 

in the OPEN CAPABILITY

● Could be used to send IPv4 routes as well
● Most routers do not announce IPv4 

Unicast/Multicast in their OPEN



  

MP_REACH_NLRI

● Format

– AFI 2 bytes
– SAFI 1 byte
– Length of Next HOP 1 byte
– Next HOP ABOVE LEN
– Reserved  (must be zero) 1 byte
– List of NLRIs remaining data

● IPv6 has 3 unicast address scope

– Global well suited for routing
– Site-local BGP has no concept of site and can not use it
– Link-local only relevant for both BPG speakers

● IPv6 Next HOP

– next-hop size can be 16 or 32 (one or two IPs)
– global IP is required
– Link-local

● may be included
● may be remove by the receiving router



  

Graceful Restart

● A Change to the forwarding
– keep routes in RIB

● when BGP connection is lost
● If an new OPEN negotiation start even if nothing wrong detected 

● End-of-RIB Marker
– is a valid UPDATE for the AFI/SAFI family

● with no reachable NLRI
● with empty withdrawn NLRI
● with no Path Attribute

– inform that all the routes have been (re)transmitted
● Often implemented even if hardware can not retain routes 

on reboot for faster route selection



  

Graceful Restart

● Capability
● Restart Flag

– indicate we are recovering from a failure
– prevent deadlock caused by waiting for the EOR marker when 

multiple BGP speakers peering with each other restart
● Restart Time

– estimated time to re-establish the connection
– prevent waiting for a dead peer

● The AFI/SAFI for which GR is supported

● Address Family Flag

– let the router know if forwarding was well maintained during 
reboot



  

Graceful Restart

● Allow hitless switch of BGP process
– switch master to backup RE and back
– the router must still route during the BGP restart

● Peer announced Graceful Restart
● connection is detected as failed

– no end notification was sent
● the router does NOT remove the BGP routes

– mark them as stale but keep using them
– wait for the time specified in the OPEN capability
– if no changes, remove the route



  

RFC 5575 / Flow Spec

● What is RFC 5575 ?
– previously known as « flow spec » before August 2009
– supported by Juniper (no idea about Cisco)
– drafts by Juniper, Abor and NTT

● 2 of the 4 Juniper engineers have Cisco emails in the RFC :)
● What is a « flow » ?

● new NLRI (like IPv6, MPLS, VPLS, …)
– but not a « route » more a firewall match condition 
– AFI 1, SAFI 133 for internet trafic
– AFI 1, SAFI 134 for MPLS traffic
– validated against corresponding unicast routing table

● build with « components »
● Why use it ?

● handle DDOS with ASIC accelerated routers
● throttle protocols
● redirect selected type of traffic



  

RFC 5575 / Flow Spec

● Possible components making the flow
● Prefix (source and destination)
● IP Protocol (list of <action, value>)

– end of list, AND, LEN, less than, more than, equal
– allow to express a port range, ie   > 6880 and < 6890

● Port (source, destination, either)
● ICMP (type, code)
● TCP flag (list of <action, value>)

– end of list, AND, LEN, NOT, match (set or unset)
● Packet Len
● DSCP
● Fragment

– Don't Fragment, Is Fragment, First Fragment, Last Fragment

● Format
● the RFC includes some example packets
● and how to decode them in the RFC :D



  

RFC 5575 / Flow Spec

● Filtering actions
● Use communities (your network, your choice)

– Normal or extended
– No convention but a small set of extended communities

● See RFC 4360 …
– 0x8006 traffic-rate 2-byte as#, 4-byte float
– 0x8007 traffic-action bitmask 

● 0x47 Terminal Filtering Action
● 0x46 Sample and Log for this NLRI

– 0x45-0x00 Reserved / Undefined
– 0x8008 redirect 6-byte Route Target
– 0x8009 traffic-marking DSCP value



  

Variation between vendors

● Pretty clear and well followed RFC
– make reading SIP RFC painful
– no major variation noted

● Malformed Packets
– Quagga and Cisco accept wrong Attribute Flag for Well 

Known Attributes (like with wrong Transitivity)
– Juniper refuse and send you some obscure 

NOTIFICATION (my fault in the first instance)

● Not many differences
– CISCO_ROUTE_REFRESH and ROUTE_REFRESH
– Cisco extra KEEPALIVE as EOR



  

Extra KEEPALIVE

● Sequence of messages

→ OPEN

← OPEN

← KEEPALIVE

→ KEEPALIVE (end of OPEN sequence)

← KEEPALIVE (as no update / EOR ?)

← KEEPALIVE (used as EOR / Normal KA ?)

Normal usage of KEEPALIVE

● Not in any RFC



  

BGP route injector

● Usage
● initially for ASN 112 annoucement
● now to announce all customer facing IPs (/32)

– for both IPv4 and IPv6 
● Replaced some LVS and Wackamole

● Graceful Restart allows for
– for service on one machine only

● restart the daemon without flap on config change
● reboot machine without causing any routing change

● A low hold-time allows to:
– rapid fail-over to a active backup machine



  

BGP route injector

● Juniper do not like gratuitous ARP
– disabling it is a security risk
– behaviour may only be changed per interface, not VLAN
– causes issues with most failover systems client side
– not able to announce /32 or /128 using ARP broadcast

● Exa Networks' BGP route injector
– http://bgp.exa.org.uk/
– Juniper like syntax

http://bgp.exa.org.uk/


  

Example – ASN 112
neighbor 192.0.2.254 {

description "a core bgp router";
router-id 192.175.48.254;
local-address 10.0.0.254;
local-as 112;
peer-as 64511;
hold-time 30;
graceful-restart 300;

static {
route 192.175.48.0/25 {

next-hop 192.0.2.1;
med 100;
community [ 64511:30740 64511:0 ];

}
route 192.175.48.128/25 next-hop 192.0.2.2 community 0x101;  

}
}



  

The program itself

● No dependencies
● No need to run as root (does not bind)
● Single threaded with co-routine
● Recommend the issue of daemontools for 

supervision
● In production in our network for a few months



  

QUESTIONS ??

Answers :

● Why is a router stuck in active ?
● it could not establish a connection to its peer
● it is not trying anymore (configuration, algo choice, ...)
● your peer is not trying neither
● forcing the peer to return to IDLE state will force a new attempt to connect

● Why is my router crashing
● The answer is at http://www.andyd.net/media/talks/asn4_breaks_network.pdf

● What is flow spec
● Now you know !

● What if I use a  Holdtime of 3
● Lots of KEEPALIVE  packets being exchanged 
● The fastest possible detection of peer failure without BFD 



  

BLOOPERS

Mandriva fun ...

# urpmi bird
To satisfy dependencies, the following packages are going to be installed:
   Package                        Version      Release       Arch   
(medium "contrib")
  libquagga0                     0.99.7       2mdv2008.0    i586    
  quagga                         0.99.7       2mdv2008.0    i586    
3.7MB of additional disk space will be used.
Proceed with the installation of the 2 packages? (Y/n) n
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