Naked BGP

What does BGP4 look like on the wire ?

Thomas Mangin Exa Networks Limited

UKNOF 15

Who reads RFCs ?

- Desperate network engineers
 - why is that session « stuck in ACTIVE »
 - why are my routers now crashing (ASN4)
- Bleeding edge engineers
 - what is FlowSpec ?
- Curious Engineers
 - what if I changed the HoldTime value to 3 ??
- MAD people
 - wanting to write their own software \leftarrow I am here ...
 - mostly SIP developers nowdays

A new application why?

- Announce our service IP (/32)
 - SMTP, MX, POP, IMAP, WEBMAIL, AUTH DNS, ...
- Others exist but
 - OpenBGPD great but no official support on Linux
 - BIRD good but no package for all our Linux distros
 - Quagga Cisco configuration format (pain)
 - bgpfeeder, bgpsimple, pybgp no IPv6
- Wanted
 - easy installation (python always installed, nothing else needed)
 - familiar and simple configuration
 - integrate with our code base (suspension, IWF filtering, etc.)

BGP4 – Main RFCs

- RFC 4271
 - A Border Gateway Protocol 4 (BGP-4)
 - Obsoletes: 1771
- RFC 5492
 - Capabilities Advertisement with BGP-4
 - Obsoletes: 3392, 2842
- × RFC 2385
 - Protection of BGP Sessions via the TCP MD5 Signature
 I can't implement it, the Python socket module does not export TCP_MD5_AUTH

BGP4 – Common RFCs

× RFC 3107

- Carrying Label Information in BGP-4

- RFC 4760 (and RFC 2545)
 - Multiprotocol Extensions for BGP-4
 - Obsoletes: 2858
- × RFC 4893

- BGP Support for Four-octet AS Number Space

BGP4 – Less common RFCs

RFC 4724

- Graceful Restart Mechanism for BGP

- × RFC 4360
 - BGP Extended Communities Attribute
- × RFC 5575
 - Dissemination of Flow Specification Rules
- → Find all BGP-4 related RFCs
 - http://www.bgp4.as/rfc

Packets

- Very few types
 - OPEN to negociate a BGP4 connection
 - NOTIFICATION to report issues to the peer
 - KEEPALIVE to not wait for a TCP timeout
 - UPDATE to exchange routes
- More defined by other RFCs
 - RFC 2918 ROUTE REFRESH

• . .

Steps of a BGP session

Opening sequence of packets

Configured but not ready (Configured and ready (Configured and ready (Configured and ready \top TCP connection (CONTRACTION (CONTRACT)) (CONTRACT) (CONTRA

- ← OPEN
- ← KEEPALIVE

→ KEEPALIVE

(IDLE) (ACTIVE) (CONNECT) (OPENSENT)

(OPENCONFIRM) (ESTABLISHED)

Conversation

exchange of routes (if needed)..

- \rightarrow UPDATE ?
- ← UPDATE ?

Routes are not re-sent if no change occurs

(unless both routers support route refresh)

And start to send each other messages to detect dead peers

- → KEEPALIVE
- ← KEEPALIVE

Message

- Marker 16 bytes
 - legacy header from RFC 1105
 - Marker (2 bytes), Length (2 bytes), version (1 byte)
 - Type (1 byte), HoldTime (1 Byte)
 - kept but blanked
- Length of content 1 short
- Type of Message 1 byte
 - OPEN 0x01
 - UPDATE 0x02
 - NOTIFICATION 0x04
 - KEEPALIVE 0x08

OPEN

- Version – 1 byte
- ASN - 1 short
- HoldTime – 1 short
- BGP Identifier -4 bytes
- Optional Parameter Length 1 Byte
- Optional Parameters – LEN bytes
 - initially for optional authentification (deprecated)
 - now for capabilities allowing protocol extension

OPEN

HOLDTIME

- hearbeat interval
- negotiated as the <u>lower</u> holdtime between both OPEN
 - You can cause lots of BGP traffic forcing a low value
- default depends on vendor
 - Juniper 90
 - Cisco 180
- can not be lower than 3 (as KeepAlive is HoldTime / 3)
- connection MAY be rejected based on KEEPALIVE value

BGP IDENTIFIER

- unique 32 bit number
 - not really an IP but set to the IP used for the connection (in IPv4)
- often called Router-ID
- used to know which connection the router must keep

- Unknown capabilities received are ignored
- A capability can be sent multiple times with different values
 - For example to indicate support for multiple protocols
- Capabilities Format
 - Code 1 byte
 - Length 1 byte
 - Value LEN byte(s)

http://www.iana.org/assignments/capability-codes/

RESERVED	0x00			
 MULTIPROTOCOL_EXTENSIONS 	0x01 [RFC2858]			
 ROUTE_REFRESH 	0x02 [RFC2918]			
 OUTBOUND_ROUTE_FILTERING 	0x03 [RFC5291]			
 MULTIPLE_ROUTES 	0x04 [RFC3107]			
 EXTENDED_NEXT_HOP 	0x05 [RFC5549]			
 Unassigned 	0x06 - 0x3F (63)			
 GRACEFUL_RESTART 	0x40 [RFC4724]			
 FOUR_BYTES_ASN 	0x41 [RFC4893]			
 Deprecated 	0x42 (66)			
 DYNAMIC_CAPABILITY 	0x43 [Chen]			
 MULTISESSION_BGP 	0x44 [Appanna]			
ADD_PATH	0x45 [draft-ietf-idr-add-paths]			
 Unassigned 	0x46 (70) - 0x7F (127)			
 Reserved for Private Use 	0x80 (128) – 0xFF (255) [RFC5492]			
 CISCO_ROUTE_REFRESH 	0x80			
One only find reference to this in the resident land				

- Can only find reference to this in the router logs

- AFI Address Family Identifiers
 - http://www.iana.org/assignments/address-family-numbers/
 - IPv4 0x01
 - IPv6 0x02
- SAFI Subsequent AFI
 - http://www.iana.org/assignments/safi-namespace
 - SAFI Unicast 0x01
 - SAFI Multicast 0x02
 - MPLS-labeled VPN address 0x80

- Multiprotocol extension
 - OPEN with family (AFI/SAFI) of extra protocols supported
 - one capability per pair supported
 - http://www.iana.org/assignments/address-family-numbers/
 - http://www.iana.org/assignments/safi-namespace

- let the speaker know
 - if the session is from a restart
 - how long to wait before dropping stale routes
- AFI/SAFI for which GR is supported

OPEN parsed

```
OPEN Message
    Marker: 16 bytes
    Length: 45 bytes
    Type: OPEN Message (1)
    Version: 4
    My AS: 100
    Hold time: 180
    BGP identifier: 1.1.1.1
    Optional parameters length: 16 bytes
    Optional parameters
        Capabilities Advertisement (8 bytes)
            Parameter type: Capabilities (2)
            Parameter length: 6 bytes
            Multiprotocol extensions capability (6 bytes)
                Capability code: Multiprotocol extensions capability (1)
                Capability length: 4 bytes
                Capability value
                     Address family identifier: IPv4 (1)
                    Reserved: 1 byte
                     Subsequent address family identifier: Unicast (1)
        Capabilities Advertisement (4 bytes)
            Parameter type: Capabilities (2)
            Parameter length: 2 bytes
            Route refresh capability (2 bytes)
                Capability code: Route refresh capability (128)
                Capability length: 0 bytes
        Capabilities Advertisement (4 bytes)
            Parameter type: Capabilities (2)
            Parameter length: 2 bytes
            Route refresh capability (2 bytes)
                Capability code: Route refresh capability (2)
                Capability length: 0 bytes
```

NOTIFICATION

Format

- Error code
 1 byte
- Error subcode 1 byte
- Data variable

Error codes

- 1 Message header error 4 Hold timer expired
- 2 OPEN message error 5 State machine error
- 3 UPDATE message error
- 6 Cease
- Error Sub Code
 - too many to list, see RFC 4271 section 4.5
- Data is a human readeable string
 - its length is calculated from the length of the message

KEEPALIVE

- No content, just the BGP Header
- Heartbeat message
- If no message is seen during a HoldTime period, the session must be torn down
 - KeepAliveTime = HoldTime / 3
 - « a reasonable maximum time »
 - « no more than once a second »
- KEEPALIVE message should be sent every KeepAlive time if no UPDATE was generated to make sure no Timeout occurs

UPDATE

- Used to update remote RIB
- For IPv4 Nice and simple
 - routes to remove (in NLRI format)
 - characteristics of the new routes
 - new routes (in NLRI format)
- Format
 - Withdrawn Routes Length
 - Withdrawn Routes
 - Total Path Attribute Length
 - Path Attributes
 - NLRI(s)
- Space efficient
 - Maximum message size is 4096

2 bytes LEN above bytes 2 bytes LEN above bytes what is left

NLRI

- Network Layer Reachability Information
 - Fancy RFC name for a prefix
 - Netmask as a character => /32 byte of value 32
 - Followed by only the necessary bytes of the IP address
- Examples
 - 10.0.0/8 0x08 0x10
 - 192.0.2.0/24 0x18 0xC0 0x00 0x02
 - 192.0.2.1/29 0x1D 0xC0 0x00 0x02 0x01
 - 0.0.0/0 0x00

Path Attributes

- Store routes meta-data
 - Transitive : Router must relay the Attribute
 - Unknown Transitive SHOULD be accepted
 - Unknown non-transitive MUST be ignored
 - Optional : Understanding of this attribute is optional
 - Mandatory : Must be present (or Discretionary)
 - Well known MUST be transitive
 - MUST be supported by every implementation
 - Partial : Do we know this attribute
 - Once set as unknown the value stays set
 - Every route in the path can add some optional transitive attribute
- Well Known Attributes (minimum implementation)
 - Mandatory
 ORIGIN, AS_PATH, NEXT_HOP
 - Discretionary LOCAL_PREF, ATOMIC_AGGREGATE

Path Attributes

• Best known attributes

•	CODE	NAME	FLAGS	Number	Other
•	0x01	ORIGIN	Mandatory, Transitive	Unique	
•	0x02	AS-PATH	Mandatory, Transitive	Unique	
•	0x03	NEXT_HOP	Mandatory, Transitive	Unique	
•	0x04	MED	Optional	Unique	EBGP only
•	0x05	LOCALPREF	Discretionary, Transitive	Unique	IBGP only
•	0x06	ATOMIC_AGGREGATE	Discretionary, Transitive		
•	0x07	AGGREGATOR	Optional	Unique	
•	0x08	COMMUNITIES	Optional, Transitive	Unique	
0x09 ORGINATOR_ID, 0x0A CLUSTER_LIST					
•	0x0E	MP REACH NLRI	Optional, Transitive	Multiple	
•	0x0F	MP UNREACH NLRI	Optional, Transitive	Multiple	
_					

- Selection Algorithm order
 - highest LOCAL_PREF shorter AS_PATH lower ORIGIN lowest MED EBGP over IBGP

Path Attributes

- Attribute Flag 1 byte
 - Flags description
 - 0x10 EXTENDED_LENGTH
 - 0x20 PARTIAL
 - 0x40 TRANSITIVE
 - 0x80 OPTIONAL

The length is two bytes and not one

do we understand what is relaid

- order to pass the attribute even if non known
- zero for Well Known Attributes
- Sum of all the flags (some would say binary OR)
- Attribute Code 1 byte
- Length
 1 byte or 1 short
- Attribute Value LEN Above
 - content of the Attribute dependant on the attribute code

ORIGIN

- Attribute Value
 - 1 byte with the origin
 - 0x00 IGP
 Network Layer Reachability Information is interior to the originating AS
 - 0x01 EGP

Network Layer Reachability Information learned via the EGP protocol [RFC904]

- 0x02 INCOMPLETE

Network Layer Reachability Information learned by some other means

AS PATH

- Attribute Value
 - Sequence of one or multiple path segments
 - path segment type 1 byte
 - 0x01 AS SET
 - unordered set of ASes
 - Included when performing an aggregation
 - 0x02 AS SEQUENCE
 - ordered set of ASes
 - Used path the path vector algorithm
 - path segment length 1 byte
 - length, path segment value ABOVE LEN * 2 byte(s)
 - list of short integer

NEXT_HOP

- Attribute Value
 - IP 4 bytes
 - inet_aton representation of the Ipv4
- Well Known Attribute
 - in RFC 4271
- Does not always need to be present
 in RFC 4760

LOCAL_PREF, MED, ...

- Attribute Value
 - long integer 4 bytes

• The other Attributes are waiting for you in RFC 4271

UPDATE parsed

```
UPDATE Message (I removed a MED attribute and removed a route to fit the slide so the sizes are off)
    Marker: 16 bytes
    Length: 52 bytes
    Type: UPDATE Message (2)
    Unfeasible routes length: 0 bytes
    Total path attribute length: 25 bytes
    Path attributes
        ORIGIN: IGP (4 bytes)
            Flags: 0x40 (Well-known, Transitive, Complete)
                0... = Well-known
                .1.. .... = Transitive
                \dots 0 \dots = Complete
                \dots 0 \dots = \text{Regular length}
            Type code: ORIGIN (1)
            Length: 1 byte
            Origin: IGP (0)
        AS PATH: 100 (7 bytes)
            Flags: 0x40 (Well-known, Transitive, Complete)
                0 \dots = Well-known
                .1.. .... = Transitive
                \dots 0 \dots = Complete
                \dots 0 \dots = \text{Regular length}
            Type code: AS PATH (2)
            Length: 4 bytes
            AS path: 100
                AS path segment: 100
                     Path segment type: AS SEQUENCE (2)
                     Path segment length: 1 AS
                    Path segment value: 100
        NEXT HOP: 10.0.0.1 (7 bytes)
            Flags: 0x40 (Well-known, Transitive, Complete)
                0.... = Well-known
                .1.. .... = Transitive
                \dots 0 \dots = Complete
                \dots 0 \dots = \text{Regular length}
            Type code: NEXT HOP (3)
            Length: 4 bytes
            Next hop: 10.0.0.1 (10.0.0.1)
    Network layer reachability information: 4 bytes
        50.0.0/24
            NLRI prefix length: 24
            NLRI prefix: 50.0.0.0 (50.0.0.0)
```

Path Attribute and IPv6

- Announcing an IPv6 route
 - The AFI/SAFI family pair must have been received in the OPEN CAPABILITY
 - Special case of MultiProcol BGP
 - Create a UPDATE
 - with no withdrawal
 - with no NLRI
 - with an ORIGIN and AS_PATH (NEXT_HOP ignored)
 - If any, one MP UNREACH NLRI with all the routes to remove
 - If any, one MP REACH NRI with all the routes to add
 - Only takes a few bytes more to use MP BGP for IPv4
- MP BGP is an elegant solution to avoid BGP5

MP_UNREACH_NLRI

- Format
 - AFI 2 bytes
 - SAFI 1 byte
 - Withdrawn NLRIs remaining data
- To send IPv6 routes
 - The AFI/SAFI family pair must have been received in the OPEN CAPABILITY
- Could be used to send IPv4 routes as well
 - Most routers do not announce IPv4 Unicast/Multicast in their OPEN

MP_REACH_NLRI

• Format

_	AFI	2 bytes
-	SAFI	1 byte
_	Length of Next HOP	1 byte
_	Next HOP	ABOVE LEN
_	Reserved (must be zero)	1 byte
_	List of NLRIs	remaining data

• IPv6 has 3 unicast address scope

- Global well suited for routing
- Site-local BGP has no concept of site and can not use it
- Link-local only relevant for both BPG speakers

IPv6 Next HOP

- next-hop size can be 16 or 32 (one or two IPs)
- global IP is required
- Link-local
 - may be included
 - may be remove by the receiving router

- A Change to the forwarding
 - keep routes in RIB
 - when BGP connection is lost
 - If an new OPEN negotiation start even if nothing wrong detected
- End-of-RIB Marker
 - is a valid UPDATE for the AFI/SAFI family
 - with no reachable NLRI
 - with empty withdrawn NLRI
 - with no Path Attribute
 - inform that all the routes have been (re)transmitted
- Often implemented even if hardware can not retain routes on reboot for faster route selection

- Capability
 - Restart Flag
 - indicate we are recovering from a failure
 - prevent deadlock caused by waiting for the EOR marker when multiple BGP speakers peering with each other restart
 - Restart Time
 - estimated time to re-establish the connection
 - prevent waiting for a dead peer
 - The AFI/SAFI for which GR is supported
 - Address Family Flag
 - let the router know if forwarding was well maintained during reboot

- Allow hitless switch of BGP process
 - switch master to backup RE and back
 - the router must still route during the BGP restart
- Peer announced Graceful Restart
 - connection is detected as failed
 - no end notification was sent
 - the router does NOT remove the BGP routes
 - mark them as stale but keep using them
 - wait for the time specified in the OPEN capability
 - if no changes, remove the route

RFC 5575 / Flow Spec

- What is RFC 5575?
 - previously known as « flow spec » before August 2009
 - supported by Juniper (no idea about Cisco)
 - drafts by Juniper, Abor and NTT
 - 2 of the 4 Juniper engineers have Cisco emails in the RFC :)
- What is a « flow » ?
 - new NLRI (like IPv6, MPLS, VPLS, ...)
 - but not a « route » more a firewall match condition
 - AFI 1, SAFI 133 for internet trafic
 - AFI 1, SAFI 134 for MPLS traffic
 - validated against corresponding unicast routing table
 - build with « components »
- Why use it ?
 - handle DDOS with ASIC accelerated routers
 - throttle protocols
 - redirect selected type of traffic

RFC 5575 / Flow Spec

- Possible components making the flow
 - Prefix (source and destination)
 - IP Protocol (list of <action, value>)
 - end of list, AND, LEN, less than, more than, equal
 - allow to express a port range, ie > 6880 and < 6890
 - Port (source, destination, either)
 - ICMP (type, code)
 - TCP flag (list of <action, value>)
 - end of list, AND, LEN, NOT, match (set or unset)
 - Packet Len
 - DSCP
 - Fragment
 - Don't Fragment, Is Fragment, First Fragment, Last Fragment
- Format
 - the RFC includes some example packets
 - and how to decode them in the RFC :D

RFC 5575 / Flow Spec

- Filtering actions
 - Use communities (your network, your choice)
 - Normal or extended
 - No convention but a small set of extended communities
 - See RFC 4360 ...
 - 0x8006 traffic-rate 2-byte as#, 4-byte float
 - 0x8007 traffic-action bitmask
 - 0x47 Terminal Filtering Action
 - 0x46 Sample and Log for this NLRI
 - 0x45-0x00 Reserved / Undefined
 - 0x8008 redirect 6-byte Route Target
 - 0x8009 traffic-marking DSCP value

Variation between vendors

- Pretty clear and well followed RFC
 - make reading SIP RFC painful
 - no major variation noted
- Malformed Packets
 - Quagga and Cisco accept wrong Attribute Flag for Well Known Attributes (like with wrong Transitivity)
 - Juniper refuse and send you some obscure NOTIFICATION (my fault in the first instance)
- Not many differences
 - CISCO_ROUTE_REFRESH and ROUTE_REFRESH
 - Cisco extra KEEPALIVE as EOR

Extra KEEPALIVE

- Sequence of messages
 - $\rightarrow OPEN$
 - ← OPEN
 - ← KEEPALIVE
 - → KEEPALIVE (end of OPEN sequence)
 - ← KEEPALIVE (as no update / EOR ?)
 - ← KEEPALIVE (used as EOR / Normal KA ?)

Normal usage of KEEPALIVE

• Not in any RFC

BGP route injector

- Usage
 - initially for ASN 112 annoucement
 - now to announce all customer facing IPs (/32)
 - for both IPv4 and IPv6
 - Replaced some LVS and Wackamole
- Graceful Restart allows for
 - for service on one machine only
 - restart the daemon without flap on config change
 - reboot machine without causing any routing change
- A low hold-time allows to:
 - rapid fail-over to a active backup machine

BGP route injector

- Juniper do not like gratuitous ARP
 - disabling it is a security risk
 - behaviour may only be changed per interface, not VLAN
 - causes issues with most failover systems client side
 - not able to announce /32 or /128 using ARP broadcast
- Exa Networks' BGP route injector
 - http://bgp.exa.org.uk/
 - Juniper like syntax

Example – ASN 112

```
neighbor 192.0.2.254 {
    description "a core bgp router";
    router-id 192.175.48.254;
    local-address 10.0.0.254;
    local-as 112;
    peer-as 64511;
    hold-time 30;
    graceful-restart 300;

static {
    route 192.175.48.0/25 {
```

```
next-hop 192.0.2.1;

med 100;

community [ 64511:30740 64511:0 ];

}

route 192.175.48.128/25 next-hop 192.0.2.2 community 0x101;
```

The program itself

- No dependencies
- No need to run as root (does not bind)
- Single threaded with co-routine
- Recommend the issue of daemontools for supervision
- In production in our network for a few months

QUESTIONS ??

Answers :

- Why is a router stuck in active ?
 - it could not establish a connection to its peer
 - it is not trying anymore (configuration, algo choice, ...)
 - your peer is not trying neither
 - forcing the peer to return to IDLE state will force a new attempt to connect
- Why is my router crashing
 - The answer is at http://www.andyd.net/media/talks/asn4_breaks_network.pdf
- What is flow spec
 - Now you know !
- What if I use a Holdtime of 3
 - Lots of KEEPALIVE packets being exchanged
 - The fastest possible detection of peer failure without BFD

BLOOPERS

Mandriva fun ...

urpmi bird To satisfy dependencies, the following packages are going to be installed: Package Version Release Arch (medium "contrib") libquagga0 0.99.7 2mdv2008.0i586 0.99.7 2mdv2008.0 i586 quagga 3.7MB of additional disk space will be used. Proceed with the installation of the 2 packages? (Y/n) n