

Naked BGP

What does BGP4 look like on the wire ?

Thomas Mangin
Exa Networks Limited

UKNOF 15

Who reads RFCs ?

● Desperate network engineers
– why is that session « stuck in ACTIVE »
– why are my routers now crashing (ASN4)

● Bleeding edge engineers
– what is FlowSpec ?

● Curious Engineers
– what if I changed the HoldTime value to 3 ??

● MAD people
– wanting to write their own software ← I am here ..
– mostly SIP developers nowdays

A new application why ?

● Announce our service IP (/32)
– SMTP, MX, POP, IMAP, WEBMAIL, AUTH DNS, ...

● Others exist but
– OpenBGPD – great but no official support on Linux

– BIRD – good but no package for all our Linux distros

– Quagga – Cisco configuration format (pain)

– bgpfeeder, bgpsimple, pybgp – no IPv6

● Wanted
– easy installation (python always installed, nothing else needed)

– familiar and simple configuration

– integrate with our code base (suspension, IWF filtering, etc.)

BGP4 – Main RFCs

✔ RFC 4271
– A Border Gateway Protocol 4 (BGP-4)
– Obsoletes: 1771

✔ RFC 5492
– Capabilities Advertisement with BGP-4
– Obsoletes: 3392, 2842

✗ RFC 2385
– Protection of BGP Sessions via the TCP MD5 Signature

I can't implement it, the Python socket module does not
export TCP_MD5_AUTH

BGP4 – Common RFCs

✗ RFC 3107
– Carrying Label Information in BGP-4

✔ RFC 4760 (and RFC 2545)
– Multiprotocol Extensions for BGP-4
– Obsoletes: 2858

✗ RFC 4893
– BGP Support for Four-octet AS Number Space

BGP4 – Less common RFCs

✔ RFC 4724
– Graceful Restart Mechanism for BGP

✗ RFC 4360
– BGP Extended Communities Attribute

✗ RFC 5575
– Dissemination of Flow Specification Rules

➔ Find all BGP-4 related RFCs
– http://www.bgp4.as/rfc

http://www.bgp4.as/rfc

Packets

● Very few types
● OPEN – to negociate a BGP4 connection
● NOTIFICATION – to report issues to the peer
● KEEPALIVE – to not wait for a TCP timeout
● UPDATE – to exchange routes

● More defined by other RFCs

● RFC 2918 – ROUTE REFRESH
● …

Steps of a BGP session

Opening sequence of packets

Configured but not ready (IDLE)

Configured and ready (ACTIVE)

TCP connection (CONNECT)

→ OPEN (OPENSENT)

← OPEN

← KEEPALIVE (OPENCONFIRM)

→ KEEPALIVE (ESTABLISHED)

Conversation

exchange of routes (if needed)..

→ UPDATE ?

← UPDATE ?

Routes are not re-sent if no change occurs

(unless both routers support route refresh)

And start to send each other messages to detect
dead peers

→ KEEPALIVE

← KEEPALIVE

Message

● Marker – 16 bytes
● legacy header from RFC 1105

● Marker (2 bytes), Length (2 bytes), version (1 byte)
● Type (1 byte), HoldTime (1 Byte)

● kept but blanked
● 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

● Length of content – 1 short
● Type of Message – 1 byte

● OPEN 0x01
● UPDATE 0x02
● NOTIFICATION 0x04
● KEEPALIVE 0x08

OPEN

● Version – 1 byte
● ASN – 1 short
● HoldTime – 1 short
● BGP Identifier – 4 bytes
● Optional Parameter Length – 1 Byte
● Optional Parameters – LEN bytes

– initially for optional authentification (deprecated)
– now for capabilities allowing protocol extension

OPEN

● HOLDTIME
– hearbeat interval

– negotiated as the lower holdtime between both OPEN
● You can cause lots of BGP traffic forcing a low value

– default depends on vendor
● Juniper 90
● Cisco 180

– can not be lower than 3 (as KeepAlive is HoldTime / 3)

– connection MAY be rejected based on KEEPALIVE value

● BGP IDENTIFIER

– unique 32 bit number
● not really an IP but set to the IP used for the connection (in IPv4)

– often called Router-ID

– used to know which connection the router must keep

CAPABILITIES

● Unknown capabilities received are ignored
● A capability can be sent multiple times with

different values
– For example to indicate support for multiple protocols

● Capabilities Format
● Code 1 byte
● Length 1 byte
● Value LEN byte(s)

CAPABILITIES

● http://www.iana.org/assignments/capability-codes/
● RESERVED 0x00
● MULTIPROTOCOL_EXTENSIONS 0x01 [RFC2858]
● ROUTE_REFRESH 0x02 [RFC2918]
● OUTBOUND_ROUTE_FILTERING 0x03 [RFC5291]
● MULTIPLE_ROUTES 0x04 [RFC3107]
● EXTENDED_NEXT_HOP 0x05 [RFC5549]
● Unassigned 0x06 - 0x3F (63)
● GRACEFUL_RESTART 0x40 [RFC4724]
● FOUR_BYTES_ASN 0x41 [RFC4893]
● Deprecated 0x42 (66)
● DYNAMIC_CAPABILITY 0x43 [Chen]
● MULTISESSION_BGP 0x44 [Appanna]
● ADD_PATH 0x45 [draft-ietf-idr-add-paths]
● Unassigned 0x46 (70) - 0x7F (127)
● Reserved for Private Use 0x80 (128) – 0xFF (255) [RFC5492]
● CISCO_ROUTE_REFRESH 0x80

– Can only find reference to this in the router logs

CAPABILITIES

● AFI - Address Family Identifiers
● http://www.iana.org/assignments/address-family-numbers/
● IPv4 – 0x01
● IPv6 – 0x02

● SAFI - Subsequent AFI
● http://www.iana.org/assignments/safi-namespace
● SAFI Unicast – 0x01
● SAFI Multicast – 0x02
● MPLS-labeled VPN address – 0x80

http://www.iana.org/assignments/address-family-numbers/
http://www.iana.org/assignments/safi-namespace

CAPABILITIES

● Multiprotocol extension
● OPEN with family (AFI/SAFI) of extra protocols supported

– one capability per pair supported
● http://www.iana.org/assignments/address-family-numbers/
● http://www.iana.org/assignments/safi-namespace

● Graceful Restart
● let the speaker know

– if the session is from a restart
– how long to wait before dropping stale routes

● AFI/SAFI for which GR is supported

http://www.iana.org/assignments/address-family-numbers/
http://www.iana.org/assignments/safi-namespace

 OPEN Message
 Marker: 16 bytes
 Length: 45 bytes
 Type: OPEN Message (1)
 Version: 4
 My AS: 100
 Hold time: 180
 BGP identifier: 1.1.1.1
 Optional parameters length: 16 bytes
 Optional parameters
 Capabilities Advertisement (8 bytes)
 Parameter type: Capabilities (2)
 Parameter length: 6 bytes
 Multiprotocol extensions capability (6 bytes)
 Capability code: Multiprotocol extensions capability (1)
 Capability length: 4 bytes
 Capability value
 Address family identifier: IPv4 (1)
 Reserved: 1 byte
 Subsequent address family identifier: Unicast (1)
 Capabilities Advertisement (4 bytes)
 Parameter type: Capabilities (2)
 Parameter length: 2 bytes
 Route refresh capability (2 bytes)
 Capability code: Route refresh capability (128)
 Capability length: 0 bytes
 Capabilities Advertisement (4 bytes)
 Parameter type: Capabilities (2)
 Parameter length: 2 bytes
 Route refresh capability (2 bytes)
 Capability code: Route refresh capability (2)
 Capability length: 0 bytes

OPEN parsed

NOTIFICATION

● Format
● Error code 1 byte
● Error subcode 1 byte
● Data variable

● Error codes
1 – Message header error 4 – Hold timer expired

2 – OPEN message error 5 – State machine error

3 – UPDATE message error 6 – Cease

● Error Sub Code
● too many to list, see RFC 4271 section 4.5

● Data is a human readeable string
● its length is calculated from the length of the message

KEEPALIVE

● No content, just the BGP Header
● Heartbeat message
● If no message is seen during a HoldTime

period, the session must be torn down
● KeepAliveTime = HoldTime / 3
● « a reasonable maximum time »
● « no more than once a second »

● KEEPALIVE message should be sent every
KeepAlive time if no UPDATE was generated to
make sure no Timeout occurs

UPDATE

● Used to update remote RIB

● For IPv4 Nice and simple
● routes to remove (in NLRI format)
● characteristics of the new routes
● new routes (in NLRI format)

● Format
● Withdrawn Routes Length 2 bytes
● Withdrawn Routes LEN above bytes
● Total Path Attribute Length 2 bytes
● Path Attributes LEN above bytes
● NLRI(s) what is left

● Space efficient
● Maximum message size is 4096

NLRI

● Network Layer Reachability Information
● Fancy RFC name for a prefix
● Netmask as a character => /32 byte of value 32
● Followed by only the necessary bytes of the IP address

● Examples

● 10.0.0.0/8 0x08 0x10
● 192.0.2.0/24 0x18 0xC0 0x00 0x02
● 192.0.2.1/29 0x1D 0xC0 0x00 0x02 0x01
● 0.0.0.0/0 0x00

Path Attributes

● Store routes meta-data
– Transitive : Router must relay the Attribute

● Unknown Transitive SHOULD be accepted
● Unknown non-transitive MUST be ignored

– Optional : Understanding of this attribute is optional

– Mandatory : Must be present (or Discretionary)
● Well known MUST be transitive
● MUST be supported by every implementation

– Partial : Do we know this attribute
● Once set as unknown the value stays set

– Every route in the path can add some optional transitive attribute

● Well Known Attributes (minimum implementation)
– Mandatory ORIGIN, AS_PATH, NEXT_HOP

– Discretionary LOCAL_PREF, ATOMIC_AGGREGATE

Path Attributes

● Best known attributes
● CODE NAME FLAGS Number Other

● 0x01 ORIGIN Mandatory, Transitive Unique

● 0x02 AS-PATH Mandatory, Transitive Unique

● 0x03 NEXT_HOP Mandatory, Transitive Unique

● 0x04 MED Optional Unique EBGP only

● 0x05 LOCALPREF Discretionary,Transitive Unique IBGP only

● 0x06 ATOMIC_AGGREGATE Discretionary, Transitive

● 0x07 AGGREGATOR Optional Unique

● 0x08 COMMUNITIES Optional,Transitive Unique

● 0x09 ORGINATOR_ID, 0x0A CLUSTER_LIST

● 0x0E MP REACH NLRI Optional,Transitive Multiple

● 0x0F MP UNREACH NLRI Optional,Transitive Multiple

● Selection Algorithm order
● highest LOCAL_PREF – shorter AS_PATH – lower ORIGIN – lowest MED – EBGP over IBGP

Path Attributes

● Attribute Flag 1 byte
● Flags description

– 0x10 EXTENDED_LENGTH The length is two bytes and not one

– 0x20 PARTIAL do we understand what is relaid

– 0x40 TRANSITIVE order to pass the attribute even if non known

– 0x80 OPTIONAL zero for Well Known Attributes

● Sum of all the flags (some would say binary OR)

● Attribute Code 1 byte

● Length 1 byte or 1 short

● Attribute Value LEN Above
● content of the Attribute dependant on the attribute code

ORIGIN

● Attribute Value
● 1 byte with the origin

– 0x00 IGP
Network Layer Reachability Information is interior to the
originating AS

– 0x01 EGP

Network Layer Reachability Information learned via the
EGP protocol [RFC904]

– 0x02 INCOMPLETE

Network Layer Reachability Information learned by some
other means

AS_PATH

● Attribute Value
● Sequence of one or multiple path segments

– path segment type 1 byte
● 0x01 AS_SET

– unordered set of ASes
– Included when performing an aggregation

● 0x02 AS_SEQUENCE
– ordered set of ASes
– Used path the path vector algorithm

– path segment length 1 byte
– length, path segment value ABOVE LEN * 2 byte(s)

● list of short integer

NEXT_HOP

● Attribute Value
– IP 4 bytes

● inet_aton representation of the Ipv4

● Well Known Attribute
– in RFC 4271

● Does not always need to be present
– in RFC 4760

LOCAL_PREF, MED, ...

● Attribute Value
● long integer 4 bytes

● The other Attributes are waiting for you in RFC 4271

 UPDATE Message (I removed a MED attribute and removed a route to fit the slide so the sizes are off)
 Marker: 16 bytes
 Length: 52 bytes
 Type: UPDATE Message (2)
 Unfeasible routes length: 0 bytes
 Total path attribute length: 25 bytes
 Path attributes
 ORIGIN: IGP (4 bytes)
 Flags: 0x40 (Well-known, Transitive, Complete)
 0... = Well-known
 .1.. = Transitive
 ..0. = Complete
 ...0 = Regular length
 Type code: ORIGIN (1)
 Length: 1 byte
 Origin: IGP (0)
 AS_PATH: 100 (7 bytes)
 Flags: 0x40 (Well-known, Transitive, Complete)
 0... = Well-known
 .1.. = Transitive
 ..0. = Complete
 ...0 = Regular length
 Type code: AS_PATH (2)
 Length: 4 bytes
 AS path: 100
 AS path segment: 100
 Path segment type: AS_SEQUENCE (2)
 Path segment length: 1 AS
 Path segment value: 100
 NEXT_HOP: 10.0.0.1 (7 bytes)
 Flags: 0x40 (Well-known, Transitive, Complete)
 0... = Well-known
 .1.. = Transitive
 ..0. = Complete
 ...0 = Regular length
 Type code: NEXT_HOP (3)
 Length: 4 bytes
 Next hop: 10.0.0.1 (10.0.0.1)
 Network layer reachability information: 4 bytes
 50.0.0.0/24
 NLRI prefix length: 24
 NLRI prefix: 50.0.0.0 (50.0.0.0)

UPDATE parsed

Path Attribute and IPv6

● Announcing an IPv6 route
● The AFI/SAFI family pair must have been received

in the OPEN CAPABILITY
● Special case of MultiProcol BGP

– Create a UPDATE
● with no withdrawal
● with no NLRI
● with an ORIGIN and AS_PATH (NEXT_HOP ignored)
● If any, one MP UNREACH NLRI with all the routes to remove
● If any, one MP REACH NRI with all the routes to add

– Only takes a few bytes more to use MP BGP for IPv4

● MP BGP is an elegant solution to avoid BGP5

MP_UNREACH_NLRI

● Format
– AFI 2 bytes
– SAFI 1 byte
– Withdrawn NLRIs remaining data

● To send IPv6 routes
● The AFI/SAFI family pair must have been received

in the OPEN CAPABILITY

● Could be used to send IPv4 routes as well
● Most routers do not announce IPv4

Unicast/Multicast in their OPEN

MP_REACH_NLRI

● Format

– AFI 2 bytes
– SAFI 1 byte
– Length of Next HOP 1 byte
– Next HOP ABOVE LEN
– Reserved (must be zero) 1 byte
– List of NLRIs remaining data

● IPv6 has 3 unicast address scope

– Global well suited for routing
– Site-local BGP has no concept of site and can not use it
– Link-local only relevant for both BPG speakers

● IPv6 Next HOP

– next-hop size can be 16 or 32 (one or two IPs)
– global IP is required
– Link-local

● may be included
● may be remove by the receiving router

Graceful Restart

● A Change to the forwarding
– keep routes in RIB

● when BGP connection is lost
● If an new OPEN negotiation start even if nothing wrong detected

● End-of-RIB Marker
– is a valid UPDATE for the AFI/SAFI family

● with no reachable NLRI
● with empty withdrawn NLRI
● with no Path Attribute

– inform that all the routes have been (re)transmitted
● Often implemented even if hardware can not retain routes

on reboot for faster route selection

Graceful Restart

● Capability
● Restart Flag

– indicate we are recovering from a failure
– prevent deadlock caused by waiting for the EOR marker when

multiple BGP speakers peering with each other restart
● Restart Time

– estimated time to re-establish the connection
– prevent waiting for a dead peer

● The AFI/SAFI for which GR is supported

● Address Family Flag

– let the router know if forwarding was well maintained during
reboot

Graceful Restart

● Allow hitless switch of BGP process
– switch master to backup RE and back
– the router must still route during the BGP restart

● Peer announced Graceful Restart
● connection is detected as failed

– no end notification was sent
● the router does NOT remove the BGP routes

– mark them as stale but keep using them
– wait for the time specified in the OPEN capability
– if no changes, remove the route

RFC 5575 / Flow Spec

● What is RFC 5575 ?
– previously known as « flow spec » before August 2009
– supported by Juniper (no idea about Cisco)
– drafts by Juniper, Abor and NTT

● 2 of the 4 Juniper engineers have Cisco emails in the RFC :)
● What is a « flow » ?

● new NLRI (like IPv6, MPLS, VPLS, …)
– but not a « route » more a firewall match condition
– AFI 1, SAFI 133 for internet trafic
– AFI 1, SAFI 134 for MPLS traffic
– validated against corresponding unicast routing table

● build with « components »
● Why use it ?

● handle DDOS with ASIC accelerated routers
● throttle protocols
● redirect selected type of traffic

RFC 5575 / Flow Spec

● Possible components making the flow
● Prefix (source and destination)
● IP Protocol (list of <action, value>)

– end of list, AND, LEN, less than, more than, equal
– allow to express a port range, ie > 6880 and < 6890

● Port (source, destination, either)
● ICMP (type, code)
● TCP flag (list of <action, value>)

– end of list, AND, LEN, NOT, match (set or unset)
● Packet Len
● DSCP
● Fragment

– Don't Fragment, Is Fragment, First Fragment, Last Fragment

● Format
● the RFC includes some example packets
● and how to decode them in the RFC :D

RFC 5575 / Flow Spec

● Filtering actions
● Use communities (your network, your choice)

– Normal or extended
– No convention but a small set of extended communities

● See RFC 4360 …
– 0x8006 traffic-rate 2-byte as#, 4-byte float
– 0x8007 traffic-action bitmask

● 0x47 Terminal Filtering Action
● 0x46 Sample and Log for this NLRI

– 0x45-0x00 Reserved / Undefined
– 0x8008 redirect 6-byte Route Target
– 0x8009 traffic-marking DSCP value

Variation between vendors

● Pretty clear and well followed RFC
– make reading SIP RFC painful
– no major variation noted

● Malformed Packets
– Quagga and Cisco accept wrong Attribute Flag for Well

Known Attributes (like with wrong Transitivity)
– Juniper refuse and send you some obscure

NOTIFICATION (my fault in the first instance)

● Not many differences
– CISCO_ROUTE_REFRESH and ROUTE_REFRESH
– Cisco extra KEEPALIVE as EOR

Extra KEEPALIVE

● Sequence of messages

→ OPEN

← OPEN

← KEEPALIVE

→ KEEPALIVE (end of OPEN sequence)

← KEEPALIVE (as no update / EOR ?)

← KEEPALIVE (used as EOR / Normal KA ?)

Normal usage of KEEPALIVE

● Not in any RFC

BGP route injector

● Usage
● initially for ASN 112 annoucement
● now to announce all customer facing IPs (/32)

– for both IPv4 and IPv6
● Replaced some LVS and Wackamole

● Graceful Restart allows for
– for service on one machine only

● restart the daemon without flap on config change
● reboot machine without causing any routing change

● A low hold-time allows to:
– rapid fail-over to a active backup machine

BGP route injector

● Juniper do not like gratuitous ARP
– disabling it is a security risk
– behaviour may only be changed per interface, not VLAN
– causes issues with most failover systems client side
– not able to announce /32 or /128 using ARP broadcast

● Exa Networks' BGP route injector
– http://bgp.exa.org.uk/
– Juniper like syntax

http://bgp.exa.org.uk/

Example – ASN 112
neighbor 192.0.2.254 {

description "a core bgp router";
router-id 192.175.48.254;
local-address 10.0.0.254;
local-as 112;
peer-as 64511;
hold-time 30;
graceful-restart 300;

static {
route 192.175.48.0/25 {

next-hop 192.0.2.1;
med 100;
community [64511:30740 64511:0];

}
route 192.175.48.128/25 next-hop 192.0.2.2 community 0x101;

}
}

The program itself

● No dependencies
● No need to run as root (does not bind)
● Single threaded with co-routine
● Recommend the issue of daemontools for

supervision
● In production in our network for a few months

QUESTIONS ??

Answers :

● Why is a router stuck in active ?
● it could not establish a connection to its peer
● it is not trying anymore (configuration, algo choice, ...)
● your peer is not trying neither
● forcing the peer to return to IDLE state will force a new attempt to connect

● Why is my router crashing
● The answer is at http://www.andyd.net/media/talks/asn4_breaks_network.pdf

● What is flow spec
● Now you know !

● What if I use a Holdtime of 3
● Lots of KEEPALIVE packets being exchanged
● The fastest possible detection of peer failure without BFD

BLOOPERS

Mandriva fun ...

urpmi bird
To satisfy dependencies, the following packages are going to be installed:
 Package Version Release Arch
(medium "contrib")
 libquagga0 0.99.7 2mdv2008.0 i586
 quagga 0.99.7 2mdv2008.0 i586
3.7MB of additional disk space will be used.
Proceed with the installation of the 2 packages? (Y/n) n

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

