

the economics of network control

A Practical Perspective on Traffic Engineering

UKNOF 15 – 21 Jan 2010

John Evans johnevans@cariden.com

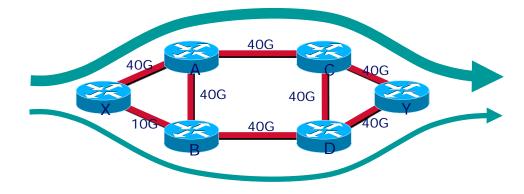
2010 © Cariden Technologies

www.cariden.com

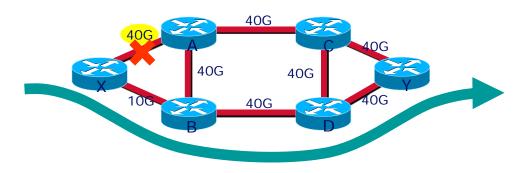
- Network planning and traffic engineering are two faces of the same problem.
 - Network planning:
 - Ensuring there is sufficient capacity to deliver the SLAs required for the transported services
 - e.g. building your network capacity where the traffic is
 - Traffic engineering:
 - Ensuring that the deployed capacity is efficiently used
 - e.g. routing your traffic where the network capacity is

A practical perspective on traffic engineering

- In IP / MPLS networks, traffic engineering is often considered synonymous with RSVP-based MPLS TE
 - It's not the only option ...
 - It's also not the only (or even primary) use of MPLS TE in practise
- Traffic engineering is often undertaken without an understanding of the possible benefits ... or costs
- Whilst the concepts are straightforward in theory, there are a number of non-trivial questions to be answered in any deployment



A practical perspective on traffic engineering


- What optimisation objective?
- Strategic or tactical?
- Which approach?
 - IGP TE or MPLS TE
- How often to re-optimise?
- For MPLS TE:
 - Edge mesh, core mesh or by exception?
 - Dynamic or explicit tunnel paths?
 - Tunnel sizing
 - Online or offline sizing
 - How often to resize
- How do you measure the benefit of different approaches?

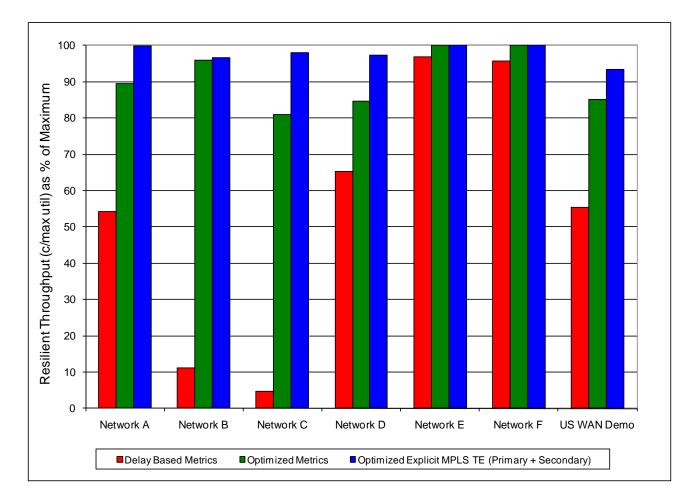
IP Traffic Engineering: The objective

- What is the primary optimization objective?
 - Either ...
 - minimizing maximum utilization in normal working (non-failure) case
 - Or ...
 - minimizing maximum utilization under defined failure conditions
- Understanding the objective is important in understanding where different traffic engineering options can help and in which cases more bandwidth is required
 - Other optimization objectives possible: e.g. minimize propagation delay, apply routing policy ...
- Ultimate measure of success is cost saving

 In this asymmetrical topology, if the demands from X→Y > 10G, traffic engineering can help to distribute the load when all links are working

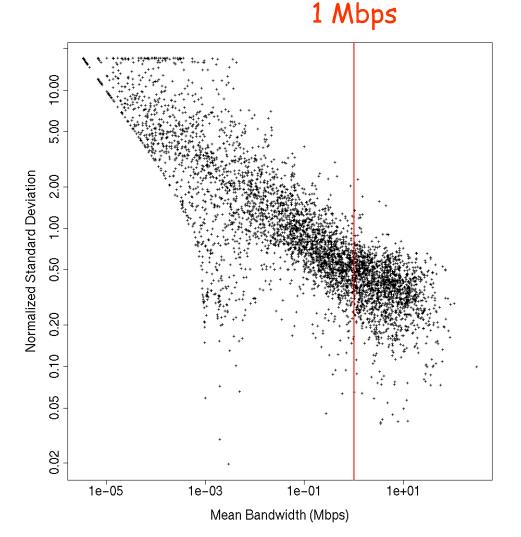
 However, in this topology when optimization goal is to minimize bandwidth for single element failure conditions, if the demands from X→Y > 10G, TE cannot help - must upgrade link X→B

- Technology approaches:
 - MPLS TE
 - IGP Metric based TE (works for IP and MPLS LDP)
- Deployment models:
 - Tactical TE
 - Ad hoc approach aimed at mitigating current congestion
 - Short term operational/engineering process
 - Configured in response to failures, traffic changes
 - Strategic TE
 - Systematic approach aimed at cost savings
 - Medium term engineering/planning process
 - Configure in anticipation of failures, traffic changes
 - Resilient metrics, or
 - Primary and secondary disjoint paths, or
 - Dynamic tunnels, or ...

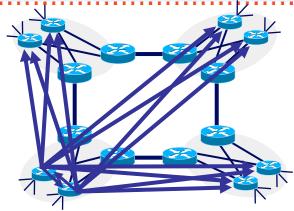

IGP metric-based traffic engineering

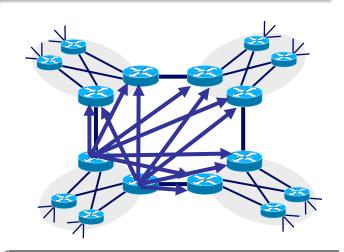
- Significant research efforts ...
 - B. Fortz, J. Rexford, and M. Thorup, "Traffic Engineering With Traditional IP Routing Protocols", IEEE Communications Magazine, October 2002.
 - D. Lorenz, A. Ordi, D. Raz, and Y. Shavitt, "How good can IP routing be?", DIMACS Technical, Report 2001-17, May 2001.
 - L. S. Buriol, M. G. C. Resende, C. C. Ribeiro, and M. Thorup, "A memetic algorithm for OSPF routing" in Proceedings of the 6th INFORMS Telecom, pp. 187188, 2002.
 - M. Ericsson, M. Resende, and P. Pardalos, "A genetic algorithm for the weight setting problem in OSPF routing" J. Combinatorial Optimization, volume 6, no. 3, pp. 299-333, 2002.
 - W. Ben Ameur, N. Michel, E. Gourdin et B. Liau. Routing strategies for IP networks. Telektronikk, 2/3, pp 145-158, 2001.

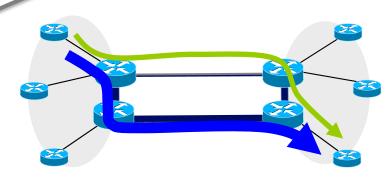
Case Study 1: Performance over Various Networks [Maghbouleh 2002]


- Study on Real Networks
- Single Set of Metrics Achieve 80-95% of Theoretical Best across Failures

Case Study 2: Variance vs. Bandwidth [Telkamp 2003]

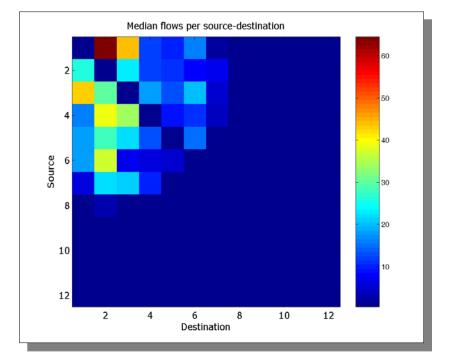

- Around 8000 demands between core routers
- Most traffic carried by (relatively) few big demands
 - 97% of traffic is carried by the demands larger than 1 Mbps (20% of the demands!)
- Relative variance decreases
 with increasing bandwidth
- High-bandwidth demands are well-behaved (predictable) during the course of a day and across days
- Generally little motivation for dynamically changing routing during the course of a day
- Reoptimisation frequency O(days) rather than O(hours)




MPLS TE: Edge mesh, core mesh or by exception?

- Edge mesh
 - Requires n*(n-1) tunnels, where n=# of head-ends
 - Significant provisioning and management burden in medium or large networks

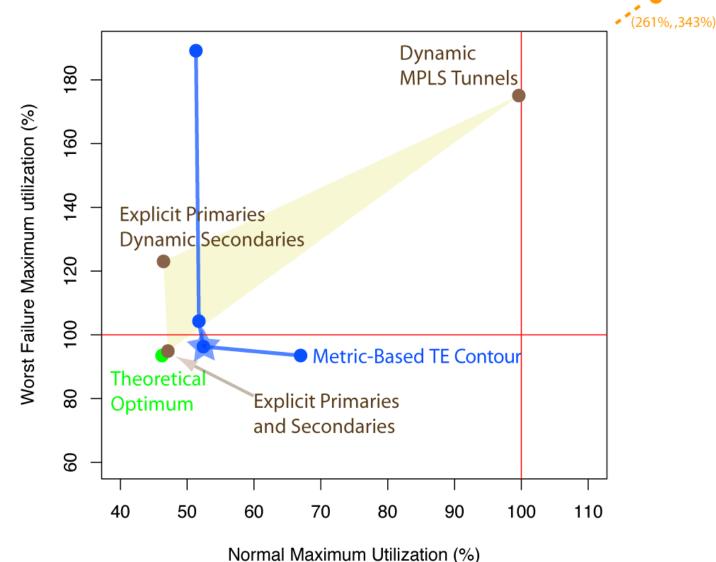
- Core mesh
 - Reduces # tunnels
 - Generally effective for medium to large networks
 - May suffer from "traffic sloshing" fix with forwarding adjacency
- By exception
 - Useful where the problem is managing a relatively small number or relatively large demands



MPLS TE: Edge mesh, core mesh or by exception?

Case Study 3: Example Data from Tier-1 IP Backbone [Telkamp 2007]

- Large network
- Few large nodes contribute to total traffic
 - 20% demands generate 80% of total traffic
- Core mesh or by exception most appropriate solutions



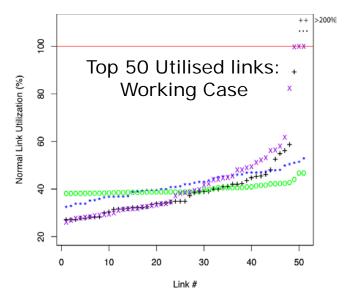
Spatial demand distributions -European subnetwork MPLS TE deployment considerations

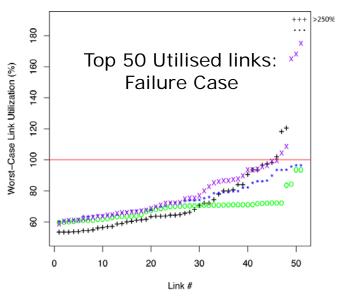
- Dynamic or Explicit tunnel paths?
 - Dynamic path option, i.e. head-end router calculated tunnel path
 - Must specify bandwidths for tunnels
 - Otherwise defaults to IGP shortest path
 - Dynamic tunnels introduce indeterminism and cannot solve "tunnel packing" problem
 - Order of setup can impact tunnel placement
 - Each head-end only has a view of their tunnels
 - Tunnel prioritisation scheme can help higher priority for larger tunnels
 - Explicit path option, i.e. offline system calculates tunnel path
 - More deterministic, and able to provide better solution to "tunnel packing" problem
 - Offline system has view of all tunnels from all head-ends

Dynamic or Explicit tunnel paths?

Case Study 4: DT: "IGP Tuning in an MPLS Network", [Horneffer 2005]

www.cariden.com


2010 © Cariden Technologies



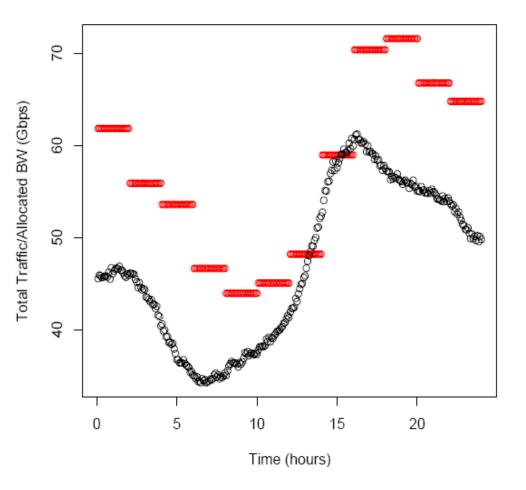
Case Study 5: Anonymous network ...

- TE Options:
 - Default metrics (no TE)
 - Metric based TE (MATE)
 - Dynamic MPLS TE
 - Mesh of CSPF tunnels in the core network
 - "Sloshing" causes congestion under failure scenarios
 - Explicit MPLS TE (MATE)
 - Failures cases considered
 - Single-circuit, circuit+SRLG, circuit+SRLG+Node
 - Plot is for single-circuit failures
- Cariden MATE software for simulations
 and optimizations

Tunnel Sizing: online vs. offline

- MPLS TE tunnel bandwidth is a one dimensional parameter no concept of rate/burst
- Tunnel sizing matters ...
 - Needless congestion if actual load >> reserved bandwidth
 - Needless tunnel rejection if reservation >> actual load
- Online vs. offline sizing:
 - Online sizing, i.e. by head-end router: autobandwidth + dynamic path option
 - Router automatically adjusts reservation (up or down) based on traffic observed in previous time interval
 - Time interval is important
 - Tunnel bandwidth is not persistent (lost on reload)
 - Offline sizing, i.e. is specified to head-end router by external system
 - If using explicit path options ...
 - ... it doesn't really matter (as long as not so high that tunnels are rejected)
 - If using dynamic path options ...
 - Use same tunnel sizing heuristic as is used for capacity planning
 - set bw to percentile (e.g. P95) of projected max load over time between

www.cariden.com

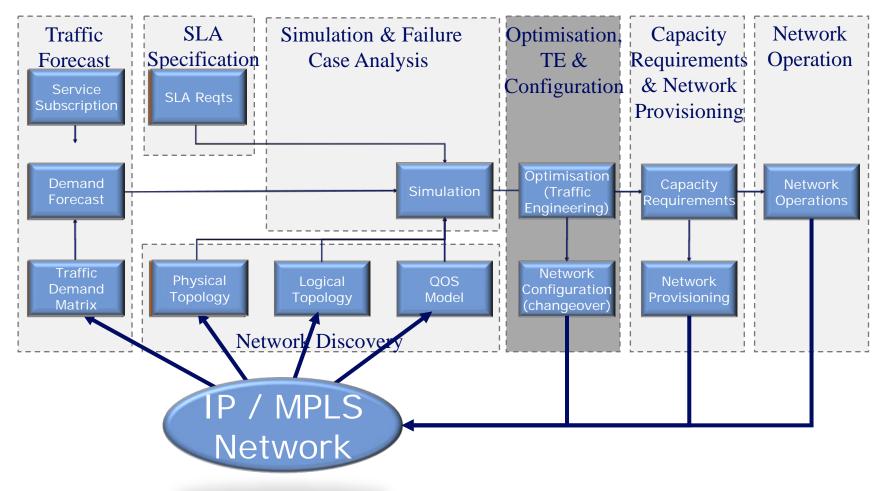

optimisations 2010 © Cariden Technologies

Tunnel Sizing: How frequently to resize?

Case Study 6: Anonymous network ...

- Resizing can be online (i.e. by head-end router) or offline (i.e. by external system)
- Possible inefficiencies or congestion if periodicity too low
- Online resizing too often can result in "bandwidth lag"
- Periodically readjust O(days) rather than O(hours)

"online sizing: bandwidth lag"



A practical perspective on traffic engineering

- Need to define whether optimising for working case or failure case
- Deployment choices
 - Tactical vs. strategic
 - IGP metric based TE vs. RSVP TE
 - RSVP-TE
 - Choice of core, edge mesh or by exception
 - Explicit path options can be more deterministic/optimal, but requires offline tool
 - Offline tunnel sizing allows most control use same tunnel sizing heuristic as is used for capacity planning
 - Re-optimisation and resizing O(days) is generally sufficient
- How do you measure the benefit of different approaches?

- Need to know traffic matrix to be able to simulate and compare potential approaches
- Ultimate measure of success is cost saving

References

- Horneffer 2005
 - Martin Horneffer, "IGP Tuning in an MPLS Network", NANOG 33, February 2005, Las Vegas
- Maghbouleh 2002
 - Arman Maghbouleh, "Metric-Based Traffic Engineering: Panacea or Snake Oil? A Real-World Study", NANOG 26, October 2002, Phoenix
- Telkamp 2003
 - Thomas Telkamp, "Backbone Traffic Management", Asia Pacific IP Experts Conference (Cisco), November 4th, 2003, Shanghai, P.R. China
- Telkamp 2007
 - Thomas Telkamp, Best Practices for Determining the Traffic Matrix in IP Networks V 3.0, NANOG 39, February 2007, Toronto
- All available from:
 - <u>http://www.cariden.com/technologies/papers.html</u>

the economics of network control

- Web: http://www.cariden.com
- Phone: +44 117 230 2405
- Address: One Redcliff Street Bristol, BS1 6TP United Kingdom