Gnodal

Lowest Latency, Highest Density, Scalable Ethernet Networks

150ns Latency - 1.5Tbps Throughput - 72 ports in 1U - 1.6W / port

Scalable, Ultra-low Latency 10/40 Gigabit Ethernet Switching Solutions for the High Performance Data Center

Presented to UKNOF Dr. John Taylor

Overview of Presentation

- High Performance Data Centre Ethernet
 - Problem
 - Solution
- Gnodal Products and Technology
 - GS-Series
- Performance Characteristics
- Case Study Distributed Fairness

Fundamental Problems

- Ethernet switches congest, leading to...
 - Reduced network bandwidth
 - High unpredictable latency
 - Limited scalability and over provisioning
 - Poor quality of service and lost business
 - Increased power consumption
 - Inefficiency and increased total cost of ownership

Who cares: customer examples & verticals

Financial Services: HFT, Equities, Algo, CoLo, DCs

Telco, SP: DC Hosting

Academic & research: HPC Clusters, converged networks

Oil & Gas: Seismic analysis, DCs

Media: Post-production, Back-end delivery

Revolutionary Solution

- Apply Techniques Honed From High Performance Computing to the Ubiquity of Ethernet
 - Develop ASIC encapsulating Scalability
 - Support Ethernet Edge with Gnodal Fabric
 - Mitigate Ethernet Standards where insufficient
 - Support highest line-rate with state-of-the-art
 - Support L2 and L2+ features
 - Design-in High Reliability
 - Provided flexibility in product packaging
 - Ensure ease of administration

World's fastest and only fully adaptive, load balancing Ethernet Fabric

Current HPDC Space

MAN Domain: Geographically dispersed (10-80Km)
Connects multiple Edge domains

Edge Domain: Campus/Enterprise Ethernet
Media Service
ISP

Technology Peta ASIC Features

- Fab'ed by IBM
 - 65nm Cu Process
 - Proven SERDES technology
- Low latency
 - 64ns Pin to Pin latency
 - 150ns First hop
 - Full crossbar/Non blocking

- 72 Port 10GHz Integrated PHYs
 - 72 x 10GbE MAC
 - 18 x 40GbE MAC
 - 18 x 40Gb Gnodal MAC

Product Description

Gnodal's System:

- Scales from 72 to 64000 ports
- Largest, most cost effective data center switch
- Highest per port bandwidth
- Best Performance, Power and Utilisation
- Highly Flexible

Gnodal designed chip:

- Solves fundamental congestion problem
- Lowest network latency
- Lowest power consumption

Large Modular Fabric Switches

Top of Rack Access Switches

GS Series Switches

Initial Products - Fixed

GS7200 GS4008 GS0018

72 x 10GbE SFP+

40 x 10GbE SFP+ 8 x 40Gb QSFP 18 x 40Gb QSFP

112 - 262W

112 - 242W

112 - 202W

1.5Tb/s Throughput Hot-swap PSU / Fans 1RU

Performance

- Latency
- Scalability Distributed Fairness
- Throughput Putting it Altogether

Performance – Latency

Gnodal hardware switching performed by switch ASIC

Minimum Latency (Measured per IETF RFC1242)

Ports	Hops	Gnodal 10GbE	Gnodal 40GbE
72	1	150ns	150ns
Inter switch *	+1	66ns	66ns
720 [¥]	3	282ns	282ns
6480 [¥]	5	414ns	414ns

150ns First Hop with 64nS cut-through latency on any additional hop

Single Switch Test

Fabric Test - 1

Fairness

Adding Another Fabric Link

Fabric Test - 2

Throughput Performance

- Network
 - 512 port fat tree
 - 24 switches (16 leaf, 8 spine)
- Traffic pattern (typical HPDC)
 - Congesting incast
 - 106 ports (chosen at random) sending to 3 ports on two (left hand) leaf switches
 - Non-contending background traffic
 - 406 ports, randomly pairing, sending number frames of varying size
 - Occasionally re-pairing (random)

Performance - Bandwidth

Performance Characteristics During End-point Congestion

Competitive Advantages

Feature	Benefit	
Gnodal ASIC (14 filed patents; 8 in draft)	Smarts supported directly in hardware and not a "software integration"	
L2+ with lowest latency	Supports optimal device level interconnection for applications	
Highest density 10 and 40 GbE	Saves on rack space and power budget	
Native 40 GbE capability	Future proof for storage aggregation and direct 40 GbE NIC support	
Scalability + Low power	Up to 64K Ports in single bridge	
Multi-path capability in multi-unit installations	High reliability and high utilization	
Congestion free architecture with dynamic re-routing	Maximizes performance and utilization	
Topology Invariant	Flexibility of deployment	
Loss-less transport	Supports network convergence and RDMA	
Up to million MAC Address per port and 1000s of Multi-Cast Groups	Highly scalable	
De facto like CLI	Ease of Administration	
Open source AVL for optics and cables	Optimal TCO and protects current investments	

Summary

- L2+ with lowest latency and power
- Highest density in 1U
 - 10GbE and 40GbE edge access
- Multi-path capability in multi-chassis installations
 - 40Gb Load balancing fabric
 - Support for millions of MAC Addresses
 - Multi-stage Scalability to 64k edge ports
- Congestion free architecture with dynamic re-routing
 - Always In Order Frame delivery
- Effective Arbitrary Size Crossbar Performance