

Lots of Changes

Change is good

- Well, change is inevitable...
- Many constraints from IPv4 now gone
- Bigger than classful vs CIDR

Routing Efficiencies

- Fixed header size
- Extension header chain
- Flow labels in header
- No intermediate fragmentation (PMTUD)
- No checksums

Network Efficiencies

- No broadcast
- Multicast
- NS/Solicited Node, no ARP
- ICMPv6

Be an architect

Sane Subnetting

- You can get enough IPv6 space
 - Do the architecture you want, not the one you're stuck with
 - Use GUA space everywhere, make NAT a choice
 - Map your subnets to your process/provisioning or business model
 - Do a scheme that aggregates and makes ACLs sane

Prefix Lengths

- /48 is minimum routable chunk
- /64 for all non-p2p subnets
- /127 for p2p links (RFC 6164)
- /128 for loopbacks
- Use /64 each for p2p/lb, pair for each routing domain

Sample /32 Plan by Geography

- 2001:db8:abcd::/36
 - City: 4 bits = 16 possible locations
- 2001:db8:abcd::/40
 - Hub: 4 bits = 16 possible hubs per city
- 2001:db8:abcd::/48
 - Floor: 8 bits = 256 floors per hub.
- 2001:db8:abcd:12xx::/56
 - Switch: 8 bits = 256 Switches per floor.
- 2001:db8:abcd:1234::/64
 - VLAN: 8 bits = 256 VLANs per switch.

Subnets, not hosts

18 quintillion...

- Addresses > L2 capacity
- RIR/ISP allocations based on subnets
- Enjoy your nibbles while you may

Use the whole /64!

IPv4 address shortages made pool size precious

IPv6 has plenty

Protect from brute force scans

Do pay attention, though...

1918/NAT. Die die die.

How did it ever make sense?

- Shortage of IPv4 for consumers
- IPv6 not widely available
- Desperation
- Mushrooms?

Why is it still around?

- Still not enough IPv4
- The "It's more secure" myth
- Have bent/twisted apps (Skype)
- Used to stifled innovation

How naked is the emperor?

- NAT != security
- Debugging/logging hard
- Breaks end to end

But we *like* to suffer

No NAT66. Yet...

- Stateful FW also painful
- ULA ~= RFC 1918

I'm a Mac

DUID > Mac address

- Mac address as ID is flawed:
 - Not always unique
 - Can be altered
 - Multi-interface hosts confuse things
- But it's what most of the eyeballs on the Internet are ID'ed by currently
- DUID (DHCP Unique Identifier) is the replacement in IPv6

What DUIDs do right

- One DUID per DHCP server or client
- One Identity Association (IA) per network interface on a host
- A host can DHCP for all interfaces via DUID/ IA as unique key

Identity Associations

Types:

- IA_TA: temporary address(es), i.e. privacy addrs
- IA_NA: non-temporary address(es), i.e. not privacy addrs
- IA_PD: prefix delegation

Where DUIDs don't work...

- Anyone using mac address for identification or filtering
- Anyone trying to correlate IPv4 and IPv6 to the same machine/user
- Persistent storage of DUID may cause surprises

Interface ID generation

- EUI-64 uses the mac address and an algorithm to generate interface ID
- Windows7/Vista randomly generates interface ID by default
- Servers and LINUX/UNIX mostly use EUI-64

But I do dual stack...

How to correlate all addrs to same client:

hwaddr draft in ietf

- circuit-id/remote-id

DHCP. Or not.

The good old days

With IPv4, only two methods:

-Static

-DHCPv4

More choices!

Classic: static

 StateLess Address Auto Configuration (SLAAC)

Stateless DHCPv6

Stateful (full DCHPv6)

SLAAC

 SLAAC == StateLess Address AutoConfiguration

Uses Router Advertisement (RA) messages

Network policy moved to the edge

Not in RA Messages...

RDNS server

NTP or "other" configuration

RFC 6106 for RDNS in RA

– Lack of client support…

DHCPv6

- "public" or "private" (temporary) addresses
- RDNS server, NTP, TFTP, Vendor options
- Update DNS with A/PTR
- But no default route!

Differences

DHCPv6

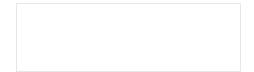
- Filter/control access
- Update IP address management system
- Update A/PTR records in DNS
- Further from client, more centralized
- Handles more complex configs, phones, printers, etc.

Differences

SLAAC

- -Local/fast
- Light weight
- Decentralized
- No logging, A/PTR updates or IPAM updates

Your priorities


- Do you have auditing or logging requirements?
- Centralized or distributed management
- Technical level of support staff
- Range of different gear?

PD

Prefix Delegation

- Dynamic Heirarchical Networks
- DHCPv6 reconfigure and your network
- Vendor support...
- Potentially cool

ICMP

ICMPv6

Required for:

- DAD
- Finding routers (RA/SLAAC)
- Finding servers (DHCP)
- PMTUD
- Connectivity (echo request/response)
- Network errors

ICMPv6 Filtering

 Filter it all and you don't have a useful network

 ICMPv6 much more detailed/precise in types and functions

RFC 4890 has excellent filtering practices

Reverse/PTR goo

How did this all start?

ftp (ftp.uu.net, ftp.wustl.edu)

SMTP

Security devices

Silly web things

How did we do it IPv4

- By hand (ow)
- Scripts
- \$GENERATE
- IPAM

How would that work for IPv6

- A single subnet is a /64
- A /64 has 18 quintillion (4 bil x 4 bil) addrs
- A PTR record has 34 labels in IPv6
- Anyone got a computer with enough disk or RAM to hold one /64 zone file?

So what are we left with?

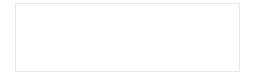
- Admit that PTRs are pointless
- Pre-populate (assuming FTL travel...)
- Pre-populate statics for routers & big servers
- As previous plus DHCP server adding clients
- Lie on the fly (if not doing DNSSEC)

The nice thing about standards...

We're not done yet

Over 200 RFCs relating to IPv6

 But over 200 drafts in active revision too...


More drafts added every IETF (3 meetings/year)

What can we do?

Participate!

 Make sure your vendors participate and implement the new standards

Pick your battles

Q&A