

Beating Bufferbloat with FQ_Codel

Dave Taht <dave.taht@bufferbloat.net>
Co-Founder, Bufferbloat.net

mailto:dave.taht@bufferbloat.net
http://creativecommons.org/licenses/by/3.0/

Bufferbloat

● Wikipedia: “ a phenomenon in a packet-switched computer network whereby excess
buffering of packets inside the network causes high latency and jitter, as well as
reducing the overall network throughput.”

● Bufferbloat is really two things:
– Excessive buffering at the device, device driver, network queue and tcp/udp queue layers in

network stacks on all modern operating systems (windows, mac, Linux, etc)
– Lack of good packet scheduling and active queue management at ANY layer in all Oses and in

common edge devices such as home network gateways, dslams, and cable head ends.

– (A very few DSL edge networks implement “shortest queue first”, which helps a lot)

● You only see the latency spikes when under load.
● Queues are usually either empty, or full.
● All sorts of loads exist, from constant, to transient. Transient spikes exist, but are hard

to see. Easy to feel or hear, however. It's easier to create constant loads and measure
against those... but not necessarily an accurate representation of reality.

http://en.wikipedia.org/wiki/Bufferbloat

This is This is
Bufferbloat! Bufferbloat!

Where we are now

● We seem to have won!
– fq_codel in increasingly wide deployment

● Vast improvements in web, voip, and gaming traffic
● Huge throughput increases as a side effect!
● “It's no longer worth even talking about tail drop queues.”

– Andrew Mcgregor, IETF core co-chair

– New latency under load Tests (RRUL)
– Cablelabs Simulation Study

– Some very convincing demos

– IETF “aqm” mailing list

https://www.youtube.com/watch?v=NuHYOu4aAqg

How we've Fixed Bufferbloat

● Better Packet Scheduling
(SFQ-like or DRR-like
proven to work)
– 5 Tuple Flow Queuing

– “Sparse” packet
optimizations - “new”
packets go to the head of
the flow queue

– Scales past 10GigE

● Smarter Packet Drop
policy (codel)
– Designed by Kathie

Nichols and Van
Jacobson as a RED
replacement

– Drop packets from
Fattest flows in a TCP-
friendly way

– Works with variable
bandwidth

Combination of the two algorithms allows for
“head drop” rather than tail drop from fat queues.

 (cablelabs iccrg report)

Gaming traffic win with sfq_codel

http://www.ietf.org/proceedings/86/slides/slides-86-iccrg-3.pdf

Web Pages do even better

Video at: http://www.youtube.com/watch?v=NuHYOu4aAqg

http://www.youtube.com/watch?v=NuHYOu4aAqg

ADSL modem latency w/FQ_Codel
with:

Ethernet flow control (pause frames)

BEFORE AFTER

● http://planet.ipfire.org/post/ipfire-2-13-tech-preview-fighting-bufferbloat

http://planet.ipfire.org/post/ipfire-2-13-tech-preview-fighting-bufferbloat

Realtime Response Under Load
test (RRUL)

● Tests 4 up, 4 down TCP
streams against icmp
and udp traffic.

● Also tries diffserv
(802.11e) classification

● Json data output
● Native Plots
● Web Interface

Extensions
● rrul46compete: RRUL using ipv4 and ipv6

at the same time.
● rtt_fair: test tcp performance between two

or more hosts to see if a system is RTT-
fair (meaning that connections to
machines at different distances eventually
or not get a fair share of the bandwidth)

● reno_cubic_westwood_lp: test
performance of different TCPs

Simpler Tests
● tcp_bidirectional: a basic test intended to give a

"textbook" result of two competing streams against a
ping

● tcp_upload: multiple tcp uploads against ping
● tcp_download: multiple tcp downloads against ping

https://lists.bufferbloat.net/pipermail/bloat/2012-November/001113.html

RRUL test helps

● See latency under load as induced by TCP
behavior

● See behavior of other applications when under
load

● Analyze problems in classification or routing
● Show things like that “smaller buffers are not

better”...

Current cable modem performance
20Mbit Down/8Mbit up

Full download rate achieved Full download rate achieved

Handles Priority & Background traffic Handles Priority & Background traffic

Low rate flows retain low latency Low rate flows retain low latency

Cable modem performance w htb +
3 tier fq_codel

Wifi Latency under load
(CeroWrt to CeroWrt)

(htb + nfq_codel) RRUL test vs
 Chrome Web Page Benchmark

 163.com, xfiniti.comcast.net

More on the RRUL test...

While I have data sets of google hangouts, audio streaming, voip, gaming and
bittorrent against the RRUL test... against various combinations of pfifo_fast
(drop tail), codel, ns2 codel, fq_codel, nfq_codel, cake...I didn't have time to plot
them all.

Prototypes of the RRUL test suite are available at:
● https://github.com/tohojo/netperf-wrapper
● Give it a try yourself! The CDF plots are great, too! Please upload your

interesting rrul plots to the RRUL Rogues Gallery
● Paper: http://akira.ruc.dk/~tohojo/bufferbloat/bufferbloat-final.pdf
● Major server/test expansion is in the works
● Huge thanks to Toke Høiland-Jørgensen <toke@toke.dk> for turning 1/3 of the

RRUL specification into code in 2 months flat.

https://github.com/tohojo/netperf-wrapper
https://www.bufferbloat.net/projects/codel/wiki/RRUL_Rogues_Gallery
http://akira.ruc.dk/~tohojo/bufferbloat/bufferbloat-final.pdf
mailto:toke@toke.dk

“FQ_Codel provides great isolation... if you've got low-
rate videoconferencing and low rate web traffic they

never get dropped. A lot of issues with IW10 go away,
because all the other traffic sees is the front of the

queue. You don't know how big its window is, but you
don't care because you are not affected by it.

FQ_Codel increases utilization across your entire
networking fabric, especially for bidirectional traffic...”

“If we're sticking code into boxes to deploy codel,
don't do that.

Deploy fq_codel. It's just an across the board win.”
 - Van JacobsonVan Jacobson

IETF 84 Talk IETF 84 Talk

Fq_Codel deployment Status
(4/15/13)

● fq_codel is now the default on all interfaces in OpenWrt/CeroWrt
● IpFire QoS
● Linux kernel mainline since Linux 3.5, ubuntu, fedora, arch support

among many others
● Google deployment
● Trials in Android
● Preliminary BSD OS work commencing
● Under evaluation at cablelabs and elsewhere
● Standardization effort starting at ietf – join the new “aqm”mailing list!

https://www.ietf.org/mailman/listinfo/aqm

Where should fq_codel be
deployed?

● Anywhere there is a fast to slow transition on the internet
– Edge networks (cable, lte, 3g, wifi, dsl)

– Underlying hardware/rate limited services on Virtual Machines

– Load balancers
– highly interactive services like Web, Voip, gaming, videoconferencing

services

● Clients/servers all benefit from the “fq” component and
configuration can be made transparent, and on by default

● Lastly - we generally don't care all that much about the “core” of
the internet... where the overhead of these algorithms is high... but
there are 2.4 billion people on the edges that will benefit from wide
deployment of this technology.

*Fq_codel Licensing... none!

● Codel algorithm placed in the public domain
● Ns2 codel and sfqcodel code available under

the BSD license
● Ns3 codel and fq_codel are BSD/GPL
● Linux GPL/BSD (for codel), GPL (fq_codel)

GO FORTH, TEST, AND DEPLOY!

Challenges Ahead

● Big Challenge -
– fq_codel is needed in cable modems, GPON, LTE,

wifi and other technologies in the end user devices
and the head ends

– End user devices look easy to fix – cpu glut

– Fatter servers (like load balancers), also

– Line cards, dslams, far less so – but the overhead
is more in the rate limiter than the AQM!

Further challenges

● Quest for a full replacement for PFIFO_Fast (diffserv support)
● Adding support for software rate limiting at higher rates
● Other delay based AQM systems (fq_PIE, etc)
● Further research into the interrelationship of drop mechanisms and

fair queuing
● Developing better tests
● Pouring codel and fq_codel derivatives into hardware and other

operating systems
● Coaxing the universe to try it to try it and deploy itdeploy it
● And there are a few problematic protocols like uTP and DASH, and

new ones like webrtc, that need to be looked at harder

Movie traffic (Netflix)

 Bufferbloat.net Resources

Bufferbloat.net: http://bufferbloat.net
Email Lists: http://lists.bufferbloat.net

 IRC Channel: #bufferbloat on chat.freenode.net
 CeroWrt: http://www.bufferbloat.net/projects/cerowrt
 Other talks: http://mirrors.bufferbloat.net/Talks

 Jim Gettys Blog – http://gettys.wordpress.com
 Educational Videos:
 http://www.bufferbloat.net/projects/cerowrt/wiki/Bloat-videos

Fixing bufferbloat is a volunteer effort!
A big thanks to the 400+ members of the bloat mailing list, Jim Gettys,
Kathie Nichols, Van Jacobson, and Eric Dumazet, ISC, ICEI, the
CeroWrt contributors, OpenWrt, the Linux core network team, Google,
and the Comcast Technology Research and Development Fund.

http://bufferbloat.net/
http://lists.bufferbloat.net/
http://www.bufferbloat.net/projects/cerowrt/wiki
http://mirrors.bufferbloat.net/Talks
http://gettys.wordpress.com/
http://www.bufferbloat.net/projects/cerowrt/wiki/Bloat-videos

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

