
USING 250 BILLION DNS
QUERIES TO ANALYSE THE

NAME COLLISION PROBLEM

Jim Reid, RTFM LLP	

jim@rfc1035.com

Background
• ICANN concerned about potential problems from new

gTLDs clashing with existing ad-hoc use of these in domain
names, “private” name spaces and certificates	

• Some anecdotal evidence, but no hard data	

• Study approved by ICANN board in mid May 2013	

• Is there a problem? 	

• If so, how big is it?	

• What risk mitigation frameworks could be applied?

Timing
• VERY Ambitious!	

• Find, gather & analyse data	

• First find out how best to do that and what resources can
be brought to bear	

• Report by Durban ICANN meeting ~6 weeks away	

• Expect findings to be challenged/attacked/checked	

• Light the touchpaper and watch the firework display…	

• Got even scarier once the scope of the data crunching
became apparent

Hardware Choices
• Use root server DITL data pcap files at DNS-OARC	

• 6TB for 2012!	

• Only available DNS-OARC box was underpowered	

• 1 pass over DITL data would take over 2 weeks: too long	

• Borrowed an 8-core CAIDA box	

• Elderly FreeBSD affected later choices	

• Data run would take about a week

Software Choices
• Got a custom version of packetq from Netnod	

• SQL-like language for crunching through pcap files	

• Mostly counted things: QTYPEs, QNAMEs, source addresses	

• Not so good for label position counting/checking though	

• 1 week of CPU time for each N-th level label to inspect	

• tcpdump, awk & fgrep for a second pass over pcap files	

• Second data run took 1 week of elapsed time

General Approach
• Split the ~250,000 pcap files for each year into 8 equal chunks	

• Run script over each pcap as an “atomic” operation	

• Generate unique output files for each input file	

• Merge or aggregate these interim files later	

• Could process files by hand if bugs/corner cases pop up	

• No locking/synchronisation issues	

• Just keep crunching, never stop or go back	

• Flag errors as corner cases, but don’t allow these to get in
the way or complicate the scripting

Why no perl or python or…?
• CAIDA box had old versions of these	

• Incompatible with latest perl/python/whatever
tools	

• GNU autoconf nested dependency hell	

• Couldn’t blooter existing stuff in case that affected the
CAIDA users who’d lent out the box	

• Had to ask for latest g++ compiler for packetq	

• Couldn’t impose on sysadmin for even more goodwill

Why no Database?
• Couldn’t realistically prototype/calibrate this in time	

• Far too many unknowns	

• How big would the database(s) be?	

• What’s the optimal size of the tables and indexes?	

• How long would it take to populate the database(s)?	

• Locking/synchronisation with 8 CPUs in parallel	

• How long would SQL queries take to run?	

• What if the database got corrupted or a scratch disk died?

Findings
• Lots of power-law distributions	

• Small numbers of TLDs and source addresses (per TLD)
accounted for most of the traffic	

• FAR more traffic for proposed TLDs than gut feel suggested	

• Almost all new gTLDs were seen	

• Traffic for .home and .corp was particularly high	

• Pretty much none of that DNS traffic was localised (enough)	

• Some interesting/unexplained traffic patterns

For Further Analysis?
• Probable leakage from Active Directory and Bonjour	

• How will those end systems behave if/when NXDOMAIN
becomes a referral response?	

• Some dynamic updates too....	

• Lookups for MX and SRV records	

• Can’t be coming from naive end users & applications	

• Something’s been deliberately (mis)configured to look for
these: what? why?	

• Should be looked at in more detail

The “Safe” Query Rate Threshold
• Lot of undue comment and attention on this	

• ICANN’s choice as the only metric	

• The .bv and .sj ccTLDs are empty and unused	

• Nobody has a valid operational reason for querying them	

• Traffic volume they get seems a fair indication of the DNS
background noise level as seen in root server traffic	

• This is only one metric out of many and might well not be the
most significant one for assessing new gTLD “safety”

ICANN Risk Mitigation Strategy
• .home and .corp are effectively dead	

• Other gTLDs can proceed to delegation	

• Block second-level labels found in DITL data for that TLD	

•sld.gTLD name servers return NXDOMAIN	

• Wildcard everything else for 90 days:	

• *.gTLD. IN A 127.0.53.53

• *.gTLD. IN TXT “Your DNS is broken…”

A conventional DNS lookup
before.newTLD is delegated

end client
stub resolver

resolving name
server

root name server

What’s the IP address of
foo.newTLD?

.newTLD does not	

exist. Go away.

What’s the IP address of
foo.newTLD?.newTLD does not	

exist. Go away.

A conventional DNS lookup
after.newTLD is delegated

end client
stub resolver

resolving name
server

root name server

What’s the IP address of
foo.newTLD?

What’s the IP address of
foo.newTLD?.foo.newTLD does	

not exist. Go away.

Here’s a list of the name
servers for .newTLD. 	

Ask one of them.

newTLD name
server

.foo.newTLD does	

not exist. Go away.

An unconventional DNS lookup
before.newTLD is delegated

end client
stub resolver

root name server

What’s the IP address of
foo.newTLD?

.newTLD does not	

exist. Go away.

An unconventional DNS lookup
after.newTLD is delegated

end client
stub resolver

root name server

What’s the IP address of
foo.newTLD?

Here’s a list of the name
servers for .newTLD. 	

Ask one of them.

newTLD name
server

Naive DNS Clients
• Stub resolvers, proxies & forwarding-only servers cannot

handle referral responses	

• Undefined behaviour when they get referrals:	

• Give up, report an error, try another name, fail, crash....	

• These devices sometimes mistakenly query the root	

• How often does this happen?	

• Is it a problem or not?	

• Which TLDs are most/least at risk?

Analysis & Crunching
• Chewed through ~10 TB of DITL data: ~250Bn requests	

• Contributing root server pcaps from 2006-2013	

• Made three passes over that data	

• Qualitative analysis	

• Comparitive analysis	

• Historical analysis	

• Qualitative analysis

Quantitative Analysis
• There’s quite a lot of RD=1 request traffic already	

• Around 12% ± 5% of current root server requests	

• This “cannot happen”	

• Only resolving name servers should be querying the root	

• Does this appear to be causing any operational problems?	

• Almost nothing does RA=1	

• No surprise: only answering servers are expected to set
this header bit

Comparitive Analysis
• Usual suspects amongst existing TLDs responsible for the

majority of RD=1 requests:	

• .com, .net, .arpa,.org, .uk, .de, .cn, .jp	

• Very few new gTLDs have RD=1 requests	

• .home and .corp are by far the biggest source	

• Most have none	

• Rates for the others are usually 1-2 orders of magnitude
lower than existing TLDs	

• .google seems to get more than its fair share

Historical Analysis

• Overall traffic patterns seem stable	

• Little variation in each year’s DITL data	

• Same TLDs appear in broadly the same position each year	

• Behaviour of the DNS as a whole seems consistent	

• A few outliers	

• Not much sign of “new/changed stuff ” perturbing the
observed traffic in the DITL data sets

Overall RD=1 Rates/Percentages
Request counts in billions (Y-axis)

0

10

20

30

40

2006 2007 2008 2009 2010 2011 2012 2013

Total Requests RD=1 Requests RD=1 as %age

RD=1 Rates for Current TLDS
Request counts in millions (Y-axis)

0

2,000

4,000

6,000

8,000

2006 2007 2008 2009 2010 2011 2012 2013

com net arpa org de ru uk jp cn

RD=1 Rates excluding .com
Request counts in millions (Y-axis)

0

450

900

1,350

1,800

2006 2007 2008 2009 2010 2011 2012 2013

net arpa org de ru uk jp cn

RD=1 Rates for New gTLDS

Actual Request counts (Y-axis)

0

17,500

35,000

52,500

70,000

2006 2007 2008 2009 2010 2011 2012 2013

sbs xyz network mail google office anz site studio
prod

Qualitative Analysis

• In-depth analysis of everything would take forever and
probably wouldn’t unearth anything new	

• Needed to make some simplifications:	

• Just looked at the glaringly obvious outliers	

• Ignored traffic levels below ICANN’s “safe” threshold -
except when there was something interesting to look at	

• High-level summary: nothing to see here, move along

2013 Data
• 57,000 of 70,000 RD=1 queries for .google came from one

IP address, a Californian school (something.k12.ca.us)	

• One IP address at a US ISP generated almost all the RD=1
lookups for .statefarm	

• Remainder had RFC1918 source addresses	

• Similar patterns for .thd and .sbs traffic	

• Probably looking at isolated examples of rogue applications or
misconfigured CPE	

• Unable to identify root cause(s) - so far

2012 Data

• Diffuse data sources for .google lookups:	

• ~600 /24s each generating ~600 queries	

• Some RFC1918 addresses again	

• Probably not worth further investigation	

• QNAMEs generally for google’s mail servers without a valid
TLD suffix: e.g. gmail-smtp-in.l.google

• Transient stub resolver or mail server misconfiguration?

2008 Data - 1

• Single /24 at a Florida ISP generated half the .anz RD=1
queries	

• Gloriously bizarre QNAMEs:	

• asad86158676.adeli.aks4you.irmr.maliblog.sina.virusgro.ups.iranmy
.sharvin.lionel00.kooliver.2game2.aminpidofsh.2mb.rozmaregi.anz	

• Clearly nothing to do with ANZ Bank

2008 Data - 2

• RD=1 queries for .mail were too diffuse to analyse/trace	

• Few hundred source /24s, each generating 300-500 requests	

• Probably not worth further investigation either	

• Can anybody account for and explain a few hundred DNS
queries for one day 6 years ago?	

• Could that info, if available, be meaningful or relevant today?

2008 Data - 3
• ~60,000 RD=1 queries for klingon.site	

• All had the same query id - 0 - and source port	

• All from the same IP address	

• Prefix assigned to University of Toronto	

• No reverse DNS	

• Probably a student programming exercise gone wrong	

• Mr. Spock can’t code? :-)

Botnet DDoS Considerations
• Details of a particular DDoS attack emerged during the analysis	

• Generates lots of spoof traffic with RD=1	

• Traffic had/has a distinctive footprint	

• Re-examined the DITL data to see if this pattern was present	

• Didn’t appear to be an issue:	

• No significant deviation in the distribution of source port
numbers and query-ids	

• Attack probably targets (signed) TLD name servers, not the
root

Findings/Conclusions - 1

• There’s a lot of RD=1 traffic going to the root already: ~12%	

• Probably always has been and always will be...	

• This doesn’t seem to be breaking anything significant	

• Naive resolvers are either failing safe or working around
referral responses somehow	

• Billions of referrals from the root to.com, .net, .arpa,
etc. do not seem to be causing problems for naive DNS
clients today

Findings/Conclusions - 2
• RD=1 traffic for new gTLDs is much lower in absolute and

relative values than the rates found for existing TLDs	

• Whatever generates these requests for new gTLDs should
somehow cope OK with referral responses - probably	

• Traffic for.google might be a concern if rogue clients are
not isolated incidents	

• Fairly stable (but low) rate of RD=1 requests for .mail	

• Could mean some mail gets delayed or bounced 	

• ICANN’s name blocking strategy shouldn’t cause harm

QUESTIONS?

