Simple, Secure, Scalable networking for
the virtualized datacentre

UKNOF 33

Ed Harrison 19t January
@eepyaich 2016

The G\O‘a\l*\

*
[+4
=
o
s L
= Ll
A
-
(7))
O
O

SoF . = ‘.J"":
i 3
W %

b y N \ \

- - 5 \

<S8 A\
H \

2 \ A\

AMAZON EC2 INSTANCE COST

$0.48

2014 CURRENT GENERATION

*4yCPU Instances: m1l.xlarge — 2012 until 2014; m3.xlarge for current generation

Everything should be made
as simple as possible,
but not simpler.

Albert Einstein

IP1:80 gl II “IIIE
IPl:SOBOO <IP1:80 H “IIIE
Port forwarding / NAT

= Simple

Works “out of the box”

Easily understood

... but not “real IP networking”

= Won't work with all applications
(e.g. IPsec)

= Onerous port assignment
constraints on applications

= Requires app developers to be
aware of constraints

Widely accepted as unsuitable
for at-scale deployments

U

Overlay networks

= Connect each container to a
virtual Layer 2 segment

= Separate “overlay” domain over
“‘underlay” network with GRE,
MPLS, VXLAN, or proprietary
tunneling protocols

= But...

= | ots of state — 1,000 machines =>
full mesh of 499,500 tunnels!

= Breaking out of virtual network
sandboxes requires NAT / router

= L2 typically not required today

» Requires app developers to be
networking experts

@projectcalico

The & Register’

ﬂ DATA CENTER SOFTWARE NETWORKS SECURITY BUSINESS HARDWARE SCIENCE BOOTNOTES

HP: OpenStack's networking nightmare
Neutron ‘was everyone's fault'

Cloud brains at HP, Red Hat, Piston, spill beans on the weak link
in the OpenStack cloud

“We tried supporting a bunch of the
commercial software-defined =
networks... The theory was, 'is it just

the open vSwitch in Neutron is crap?"
— [but] even the commercial ones P e

aren't where they need to be.”
— Joshua McKenty, CTO, Piston Cloud

@projectcalico

PROJEECT

Jpediice A Glimpse at Overlay Networking Complexity

[Configured by Nova Compute]

TAP device S [pvm 01 oLl vm 0 vm(Q 3 :
2l '
; Qeth 0 ?::h 0 ,eth 1 ;eth 0 ;
veth pair : :
: [[| [:
Linux. Beidge: ' vnetQ vnet | vnet 2 vnet 3 '
: gbrXXX qbeYYY qbr222. gbrwww |
Open vSwitch -
: : qvbXXX qvbYYY qvbZZZ qvbWWW
\ /
""""""" aqvoXXX | | avoXVY | T qvezzz || qroWWw | T
] Port VLAN tag:1 Port VLAN tag:2 | |
Tenant flows are separated ; br-int
by internally assigned VLAN ID :
T : int-br-eth 1

. ‘ VLAN ID is converted with flow table
[Configured by L2 Agvent] dl_vlan=101 = mod_vlan_vid:1
; phy-br-eth 1 dl_vlian=102 =» mod_vlan_vid:2

br-eth 1
E’enant flows are separated — — (IR p— :
b Bt oot L IDJ VLAN ID is converted with flow table
| dl_vian=1 = mod_vlan_vid:101
di_vian=2 =» mod_vlan_vid:102
Physical L2 Switch VLANIOL
for Private Network VLAN102

@projectcalico

An open source project to enable
scalable, simple and secure IP
networking in a data center / cloud
environment

Scalable Simple Secure
Thousands of servers, Don’t demand users to Rich micro-service
100k’s of workloads be networking experts policy framework

@projectcalico

Hosts

App App App App App App App App

@projectcalico

VMs / LXCs VMs / LXCs

App App App App App App App App

Compute Node Compute Node

... this is Project Calico!

@projectcalico

c:aucu Coarse-grained Policy (network/tenant ISolation)
e -

.a

Traditional approach: RS Q,?
VLANS or mesh of tunnels
(separation as by-product)

g Calico:
- ’5 Just a set of simple pollcy rules— all
% workloads in a given “network” just

share a tag; all with the same tag are
s whitelisted, others blacklisted

@projectcalico

Eﬁiﬁic@ Fine-grained Policy (micro-service segmentation)

Traditional approach:
Discrete firewall elements that
are a bottleneck and not
optimally placed to enforce
security (by the time the packet
reaches the firewall, it can’t be
sure where it came from)

X
Calico: "y’
* Rich, but simply defined, policy rules
 Distributed host-based ACL calculation

* Ingress/egress enforcement in the data-plane
pipeline immediately adjacent to each workload

@projectcalico

eiiice The Distributed Firewall

2001:db8:1234::1:2 2001:db8:1234::1:5

(@) (@)
= =
+— +—
o -
(@) M\ Network]/m @)
2001:db8:1234::1:4 X |2001:Hb8:567871 Eabri 2001:db8:5678::2 @
apric 2001:db8:1234::1:6
2001:db8:1234::1:7
. J 2001:db8:1234::1:3

@projectcalico

iptables

2001:db8:1234::1:2

2001:db8:1234::1:4

- > Route
Reflector

Kernel

2001:db8:1234::1:7

@projectcalico

‘ neted \
I

(|

container, VM, bare metal

(virtual) network interface

reusable policy

@projectcalico

Before Calico After Calico

Scale challenges above few hundred
servers / thousands of workloads

Scale to millions of workloads with minimal
CPU and network overhead

Troubleshooting connectivity issues can
take hours

What is happening is “obvious” —
traceroute, ping, etc., work as expected

Path from workload to non-virtual device
or public internet (or even between data
centers) is just a route

On/off ramps + NAT to break out of
overlay

High availability / load balancing across
links requires LB function (virtual or
physical) and/or app-specific logic

Equal Cost Multi-Path (ECMP) & Anycast
just work, enabling scalable resilience and
full utilization of physical links

CCNA or equivalent required to
understand end-to-end networking,
deploy applications

@projectcalico

Basic IP networking knowledge only
required

DOO GO

DDDDDDD

= Main project website:
www.projectcalico.org

= Github

= github.com/projectcalico

= Mailing list, Slack info:
= projectcalico.org/contact/

= freenode IRC: #calico
= Download & try it out

= We welcome your
feedback and contributions

= Follow us Y@projectcalico

Get Started on OpenStack ~ Get Started on Docker View on GitHub

Scalable Simple Open

Calico scales to tens of thousands of
servers and millions of workloads.

C O

Eydpy V De Open source and open standards.

Any Workload IPv6 Enabled Secure
Supports VM, container and bare Supports IPv4 and IPv6. Designed from the ground up to support
metal workloads rich, flexible and secure network policy,

@projectcalico

http://www.projectcalico.org

