
Implementing “safe
browsing” cost-effectively

with DNS
UKNOF34, 21st of April 2016

Presentation is on: https://tinyurl.com/ukfilter

bert.hubert@powerdns.com / @powerdns_bert

mailto:bert.hubert@powerdns.com

Context
• Various countries pressure their service providers to offer

“safe browsing”

• Safe for children

• While we are at it, malware filter

• Implemented in-band requires massive hardware investment

• Need to filter terabits/s of traffic

• Filter software for each end point device is a lot of work

• DNS is a “signalling way” of doing it

Wait, what, do NOT want, SHOULD not want

Help educate future hackers!

The problem statement
• Filter some domains

• Malware, Porn, Gambling, Drugs related etc

• For some people

• And allow per-user blacklists, whitelists, time
windows, temporary exemptions

• At high query rates (hundreds of thousands of qps)

• Robust against decade of deployment history

Where to get categorisation?
• Commercial suppliers, very good

• Spamhaus (malware)

• ThreatSTOP (malware)

• Webroot (categorization in general, malware)

• Zvelo (categorization in general, malware)

• Lots of cheap/free options with less resolution or guarantees

• squidblacklist.org

• www.shallalist.de

• http://dsi.ut-capitole.fr/blacklists/index_en.php

• https://github.com/mozilla/focus (ads)

http://squidblacklist.org
http://shallalist.de
http://dsi.ut-capitole.fr/blacklists/index_en.php
https://github.com/mozilla/focus

Simplest solution:
provisioning

• One server that filters

• One that doesn’t

• Depending on what user wants, provision to the one
server or the other server

• DHCP, Radius, TR-69

• This technique is in production here and there

Simplest solution: significant
problems

• Scales badly. For two binary choices already need 4
servers. If filtering on 8 categories, 256 servers

• Depends on users getting the right IP address, even
on their legacy CPEs and 1990s Windows XP
desktops with hardcoded DNS IP from 4
acquisitions ago

• Switching preferences requires modem reboot,
router reboot, desktop reboot etc

• Causes customer care contact

Second potential solution:
views

• Views in theory lend themselves to doing “per customer
preferences”

• Create 256 views for 8 different preferences

• Assign users to each of these views

• Reload configuration when user changes a setting

• Still does not scale very well

• We hear talk of 256GB machines (!)

• Reloading could cause hiccups

• Does not cover individual white/black lists

One solution: Nameserver
per-query policy

• “Think” per query

• Look up user status based on IP address

• Look up domain status

• Determine if query should be blocked or not

• Challenge: millions of users, millions of per domain
rules

PowerDNS Lua
Infrastructure

• Lua is a high speed embeddable language, popular in the
gaming industry and various high performance web servers

• Supports a million lookups/second per core

• Also available as a compiled version, LuaJIT

• “Luarocks” has relevant packages for most things

• Very different experience than embedding Python, Perl,
Javascript etc

• http://tylerneylon.com/a/learn-lua/ - Learn Lua in 15 Minutes
(true)

http://tylerneylon.com/a/learn-lua/

Relevant Lua hooks
• Many Lua hooks available, relevant here:

• preresolve(): called before we go out to the
internet to resolve

• gettag(): called before packet cache is consulted

• Packet cache is consulted for each incoming query
after only light parsing

• ‘ready to send’ response packets are available

Filtering technique: user
status

• In preresolve(), first look up subscriber status

• Recommended way: DJB (yes) constant database (cdb) or modern variant

• Compiles (out of the box) 9 million user settings in <1 second.
Exponentially slower after that!

• Millions of lookups/second (basically free)

• Keep master user preferences in a slower actual database

• Compile to CDB frequently & rsync

• Also do subscriber identity/IP address matching here

• CDB can be replaced while queries are running!

• CDB is in Luarocks

Filtering technique: domain
status

• Webroot & Zvelo have their own API, partially cloud
based in some configurations

• Can be accessed from Lua

• The free/cheap blacklists are all actual lists

• 100k to a million entries

• Amazing trick: read them as Lua tables

• Reads at megabytes/second!

• PowerDNS reloads Lua scripts seamlessly

Lua tables file format
• Is actual Lua code

• Executed with dofile(“./yourlist.lua”)

• This function returns what yourlist.lua returned

• Format is then:

• return {“domain1”, “domain2”, “domain3”…}

• Works for millions and millions of entries, read in
seconds

Subdomain filtering
• Block baddomain.com and www.baddomain.com.

• Domain lists actually list both as .baddomain.com.

• PowerDNS Lua knows concept of Domain Set:

• adservers=newDS()

• adservers:add(dofile(“blocklist.lua”))

• Will load millions of domains in seconds

• To check full domain against set:
adservers:match(dq.qname)

http://baddomain.com
http://www.baddomain.com
http://baddomain.com

The “shrug page” server

• If it is determined that a customer wants blocking for a
page, answer with CNAME to a proxy/web server (or a
farm of servers if need be)

• Low TTL to make sure user can change settings

• We recommend the use of nginx which supports the
same Lua that PowerDNS does

• Unified script for determining customer/domain
status: show reason for blocking domain

• Optionally, filter per URL and not per domain!

¯_(ツ)_/¯

Icing on the cake
• Popular features are per-user whitelists, blacklists,

“watershed” times and temporary opt-outs

• All trivial to add in Lua script based on per-user
configuration stored in CDB

• For temporary opt-out, store UNIX timestamp of
the ‘snooze on filtering’ event, check if request
within 3600 seconds

• If you control CPE: can also key preferences on
MAC address! (via dnsdist or dnsmasq)

Highest performance

• This solution has been benchmarked with fully
filtered access for millions of per-user settings at
200kqps on a 4 core Xeon

• Or: around 2 million fixed subscribers

• Performance trick: implement gettag() which
determines user/domain status and then relies on
the packet cache

In summary
• It is feasible to implement per-subscriber ‘safe browsing’ that

• Is not dependent on DHCP/Radius/TR-69

• Allows for fast preference switching

• Offers advanced features

• Based on Open Source PowerDNS combined with clever use of Lua,
CDB and nginx

• Further reading:

• https://blog.powerdns.com/2016/01/19/efficient-optional-filtering-of-
domains-in-recursor-4-0-0/

• https://blog.powerdns.com/2016/01/27/per-device-dns-settings-
selective-parental-control/

https://blog.powerdns.com/2016/01/19/efficient-optional-filtering-of-domains-in-recursor-4-0-0/
https://blog.powerdns.com/2016/01/27/per-device-dns-settings-selective-parental-control/

Implementing “safe
browsing” cost-effectively

with DNS
UKNOF34, 21st of April 2016

Presentation is on: https://tinyurl.com/ukfilter

bert.hubert@powerdns.com / @powerdns_bert

mailto:bert.hubert@powerdns.com

