
PowerDNS dnsdist
UKNOF34

Presentation is on:
https://tinyurl.com/ukdnsdist

http://dnsdist.org/

bert.hubert@powerdns.com / @powerdns_bert

http://dnsdist.org/
mailto:bert.hubert@powerdns.com

Outline
• PowerDNS/Open-Xchange/Dovecot/Bert

• Importance of DNS (do you measure it? why not?)

• What is dnsdist? why dnsdist?

• Some examples

• Live website, graphics, statistics

• Architecture

• Performance

• Status & Getting dnsdist

PowerDNS, Open-Xchange
• PowerDNS: around since 1999, open source since 2002

• I’m the founder, these days I’m back to coding!

• Authoritative DNS: 30%-50% of all domains, 75%+ of
DNSSEC

• Few percent of all installs though

• Recursor: 100s of millions of internet users

• Actual open source company, open software, good business

• Since 2015 part of Open-Xchange, together with Dovecot

Importance of DNS
• Everything starts with a DNS lookup

• DNS lookup slow -> everything slow

• One of the LEAST MEASURED protocols on the internet
though!

• Nobody keeps ‘access logs’ either (changing though)

• Our observation: DNS is frequently “good enough”, but almost
nobody goes for “really good”

• “works for me!”

• What happens: 500 million users on 8.8.8.8!

Dnsdist: another layer of indirection
• "dnsdist is a highly DNS-, DoS- and abuse-aware loadbalancer. Its goal

in life is to route traffic to the best server, delivering top performance to
legitimate users while shunting or blocking abusive traffic.”

• Swiss army knife of DNS problem solving. Add and remove bits, filter
out traffic, inspect traffic live from the console

• Detect infected users, force infected users to other name servers

• Delay and ratelimit bad queries, refuse to do work for certain hosts/
domains

• Loads of statistics

• Open source, vendor neutral - it is not “PowerDNS Dist”

• And let’s not forget: very smart load balancing

The story of dnsdist
• Started out as a need to do “dnsdist listen-ip destip-1 destip-2”

• Simple query spreading w/o hassle, also just forwarding

• Around since 2013

• In 2014 while debugging with a large customer, we found they were
willing & able to switch out PowerDNS versions at the drop of a hat
since they were comfortable with their loadbalancer

• Asked around, no one else was happy with their DNS load
balancer solution

Existing load balancers
• Most (HW) load balancers know about http, https, imap etc.

• DNS is sufficiently different that it is hard to treat it as ‘a weird kind of web’,
so many vendors mess it up

• Plus the quaint observation that a busy nameserver is a happy name server

• Caches HOT!

• Leads to need for a ‘concentrating load balancer’: as much traffic on as
little servers as possible

• Exactly the reverse of http etc

dnsdist: a smart “DNS
Delivery Controller”

• Runtime configurable from console (accessible remotely, tab-completing interface)

• Console & configuration file actually Lua

• Most configurations operate Lua-free at runtime

• Host of built-in load balancing/blocking/shunting/shaping policies (C++), custom policies can be written in
Lua (plenty fast)

• LuaJIT

• “Million QPS”

• Built-in webserver & API, plus Graphite/Metronome graphs

• HTTP RESTful: does not read files from disk ever

• Provides features ranging from simple round robin load balancing to quarantining of infected customers

• Vendor-neutral open source - please join in!

Some real life tests
• With two companies we tested shutting down all their nameservers but a few, leading to

lots of traffic going to one server

• In all cases, we observed lower query/response latencies and far lower cache miss rates
(±50% lower)

• Happier customers

• We also observed only minor increases in CPU load, very much sub-linear to the many-
fold traffic increase

• One name server doing millions of cable modems

• One name server doing 700k domains with online signing

• “We have a winner!”

View all this on
https://

metronome1.power
dns.com/

https://metronome1.powerdns.com/

Scenarios
• Legacy nameservers, want to get statistics

• And realtime inspection

• Need to add IPv6 service

• or: “Just need to move traffic to another server”

• Adding features to legacy DNS: TCP to ANY, Views

• Improve service through query concentration

• Send abusive traffic to “abuse pool”

• Split DNSSEC traffic to DNSSEC servers

• .. strip DNSSEC when it doesn’t work ..

Scenarios
• Add EDNS Client Subnet tag with original IP address to

survive CGNAT and still have per-user settings

• Compensate for bugs in 100k large CPE deployment

• Fix up case sensitive backends / clients

• Use regular expressions to route roaming users to the right
EPC data

• Client originated DoS worries: limit each host QPS or per /64

• Large scale DoS worries: absorb & filter at million QPS rates

dnsdist simplest config
• No config:

• # dnsdist -l 8.8.8.8 208.67.222.222 2620:0:ccc::2
2620:0:ccd::2

• Will listen on port 53, serve for RFC1918, distribute
queries to Google & OpenDNS using a sensible
load balancing policy

• Most queries to the most unloaded, fastest
server

dnsdist basic config
setLocal("130.161.252.29:53")

addACL(“130.161.0.0/24") — setACL would’ve taken out RFC1918

newServer{address="192.168.1.2", qps=1000, order=1}

newServer{address="192.168.1.79:5300", qps=10000, order=2}

newServer{address="127.0.0.1:5300", order=3}

setServerPolicy(firstAvailable)

dnsdist basic config
dnsdist --config=basic.conf

Listening on 130.161.252.29:53

Marking downstream 192.168.1.2:53 as 'up'

Marking downstream 192.168.1.79:5300 as 'up'

Marking downstream 127.0.0.1:5300 as 'down'

> showServers()

Name Address State Qps Qlim Ord Wt Queries Drops Drate Lat Pools

0 192.168.1.2:53 up 0.0 1000 1 1 0 0 0.0 0.0

1 192.168.1.79:5300 up 0.0 10000 2 1 0 0 0.0 0.0

2 127.0.0.1:5300 down 0.0 0 3 1 0 0 0.0 0.0

All 0.0 0 0

dnsdist basic config
> showServers()

Name Address State Qps Qlim Ord Wt Queries Drops Drate Lat Pools

0 192.168.1.2:53 up 0.0 1000 1 1 0 0 0.0 0.0

1 192.168.1.79:5300 up 0.0 10000 2 1 0 0 0.0 0.0

2 127.0.0.1:5300 down 0.0 0 3 1 0 0 0.0 0.0

All 0.0 0 0

> getServer(1):setDown()

> showServers()

Name Address State Qps Qlim Ord Wt Queries Drops Drate Lat Pools

0 192.168.1.2:53 up 0.0 1000 1 1 0 0 0.0 0.0

1 192.168.1.79:5300 DOWN 0.0 10000 2 1 0 0 0.0 0.0

2 127.0.0.1:5300 down 0.0 0 3 1 0 0 0.0 0.0

All 0.0 0 0

dnsdist: pretty stuff

controlSocket(“0.0.0.0") — for the console

setKey(“MXNeLFWHUe4363BBKrY06cAsH8NWNb+Se2eXU5+Bb74=") — for crypto

webserver("0.0.0.0:8083", “geheim2”)— instant webserver

carbonServer(“2a02:2770:8::2635:0:1") — send our statistics here

http://i.imgur.com/qoyfJRy.gif

http://i.imgur.com/qoyfJRy.gif

Console & Configuration
• Connect to the live console over an encrypted

connection

• NaCl/libsodium

• Can also execute commands with ‘dnsdist -e’

• Any commands with side-effects get stored

• Run ‘delta()’ at any time to figure out what changed
compared to the original configuration

• Output can be added to end of dnsdist.conf!

Statistics
• We output statistics in the ‘carbon’ format as used

by Graphite

• Sometimes we can’t help ourselves and
reimplement the wheel

• “Metronome” is our very simple “works out of the
box” mini-Graphite

• Support Auth, Recursor, dnsdist & “System”

• Public instance available so we can debug you!

Policies
• firstAvailable: Pick first server that has not exceeded its QPS

limit, ordered by the server 'order' parameter

• wrandom: Weighted random over available servers, based on
the server 'weight' parameter

• whashed: same thing but ‘sticky’

• roundrobin: Simple round robin over available servers

• leastOutstanding: Send traffic to downstream server with
least outstanding queries, with the lowest 'order', and
within that the lowest recent latency

• Lua: go wild!

Server1 Server2 Server3 Server4 Server5 Server4 Server5

Main resolver pool DNSSEC
resolver pool Abuse pool

30
kqps

30
kqps

20
kqps

DNSDIST

Policy = firstAvailable
If trouble domain or trouble source -> abuse pool
If any hint of DNSSEC query -> DNSSEC pool
Otherwise main pool, first server that has not hit qps
limit

If all servers hit limit, round robin

DoS undisconnectable
subscriber usecase

• DoS attacks of the algorithmic kind - don’t kill you
with bandwidth, do cause outgoing traffic that does,
do cause degraded performance

• Frequently blocked with complicated iptables rules,
or deployed custom zones within name servers

• Option in dnsdist: move senders of harmful DNS
traffic to dedicated servers

• Where they only ‘soil their own nest’

Campus usecase: QPS Limit
map

• Global QPS limits, per-server QPS limit

• Sometimes attacks come from single users

• MaxQPSLimit():

• addAction(MaxQPSIPRule(5, 24, 64),
DropAction())

• 5 queries/second, grouped by /24 on IPv4 and by /
64 on IPv6

protobuf: logging all or part
of traffic

• DNS queries are extremely valuable for security research

• Either in-house

• Or for finding infected ISP subscribers

• “Various other reasons”

• dnsdist logs protobuf messages for each query & response
over TCP/IP through a very light-weight mechanism

• Receive traffic using ‘xinetd’ or PowerDNS Platform

• For long term storage & search on commodity hardware

Cache: Performance &
Uptime

• High-performance cache, delivering hundreds of thousands of
answers/s per core

• Can be used to scale up poor overloaded backend

• Legitimate strategy to use more processing power by splitting
the work

• Backend 100% focused on cache misses

• Frontend dnsdist .. just keeps on serving

• Keeps you alive even under DoS since good answers continue
to come out

• Optional: persistent mode if backends truly down

Generic rule/action engine
• Full Lua access to all packets

• Upside: 100% flexibility,

• downside: slowdown at very high query rates.
Also, need to program

• In C++:

• Less dynamic, extremely fast

• Actions: drop traffic, change traffic, redirect etc

Examples
• addPoolRule({"ezdns.it.", "xxx."}, “abuse")

• addQPSPoolRule("com.", 100, “abuse")

• addDomainBlock("powerdns.org.")

• addLuaAction("192.168.1.0/24", luarule)

• addDisableValidationRule({“servfail.nl”, “1.0.0.0/8”}

• showRules()

http://servfail.nl

Rules
• Source address, query type, query class, query domain

• QPS Limit total, QPS limit per source IP or netmask

• Regular Expression, RE2

• DNSSEC on/off

• Protocol selector

• And, Or, Not

• Lua Rule

Actions
• Drop

• Route to pool

• Truncate (TC=1)

• Issue Servfail, Notimp, Refused answer

• Custom answer generation, including ‘real’ NXDOMAIN, CNAMEs etc

• Delay response by n milliseconds

• Drop RD or CD or DNSSEC bits

• Add MAC address for per-device settings

• Log query to TCP/IP Protobuf host

Dynamic rules
• If defined, every second dnsdist will call the

maintenance() function

• This function has access to query ringbuffers & helpers
that provide statistical summaries of ringsbuffers

• Can institute dynamic blocks which expire automatically

• Excessive queries, timeouts, servfails, NXDOMAINS

• Can (re)configure shaping and abuse pools

• “Your abusive traffic goes -> there”

Other things we added
• Live traffic inspection: Top-N queries, top-N clients,

top-N servfail generating queries, top-N servfail
generating domains & clients

• Latency distribution histogram

• A substantial Lua runtime which should facilitate
‘everything’ for those that need flexibility

• You can do “everything”

• Want to block traffic from prime number domains?
GO! (don’t)

I LOVE STATISTICS

Performance
• Depends on configuration of course

• Typical: several hundred thousands queries/core

• Linear scaling with SO_REUSEPORT

• Million QPS on single server has been measured

• Usually more than you need

• Has displaced Arbor at one deployment

Status & Getting it
• When will dnsdist 1.0 be released?

• NOW!

• Already powers several ISPs, a nation wide cell phone
carrier, a bunch of ccTLDs/newTLDs

• Please raise hands!

• Made possible by our telemetric monitoring & heavy
support promise

• Latest & greatest: https://repo.powerdns.com/ (tar, deb,
yum, various platforms)

https://repo.powerdns.com/

Summarizing: dnsdist
• Modern UNIX daemon

• C++ 2011 for speed, Lua(JIT) for flexibility

• Runtime & realtime console

• RESTful HTTP based API, built-in webserver

• Very complete telemetry / statistics

• About experienced service level

• Resource utilisation (file descriptors, “real” memory use, CPU use)

• Downstream health

• “Does everything with your DNS”

Beware of geeks bearing gifts

OpenClosed

Large
Scale

Service
Provider
Features

Repackaged
OSS

Appliances

PlatformFully closed
source DNS

PowerDNS dnsdist
UKNOF34

Presentation is on: https://tinyurl.com/ukdnsdist

http://dnsdist.org/

bert.hubert@powerdns.com / @powerdns_bert

http://dnsdist.org/
mailto:bert.hubert@powerdns.com

