

The Top 5 Things You need to keep in Mind when preparing your IPv6 Addressing Plan

Tom Coffeen, Infoblox Veronika McKillop, UK IPv6 Council

> UKNOF 35, Glasgow 9 September 2016

Abstract

One of the first steps in an IPv6 deployment project is to obtain an IPv6 prefix for your organisation and **create an IPv6 addressing** plan. Thanks to the growth of IPv6 deployment globally, there is **more experience and new best practices** are created that can assist with such a task.

This session will present the **top 5 major points** you need to consider and focus on when writing your addressing plan. The aim is to provide the attendees with guidance and suggestions.

Agenda

- Obtaining an IPv6 Prefix
- Subnetting your IPv6 allocation and assignments
- Working with standard IPv6 subnet sizes
- "Nibble boundary" rules
- ISP approach to addressing CPEs
- Examples of IPv6 addressing plans

1. OBTAINING AN IPv6 PREFIX

Obtaining an IPv6 Prefix (1)

- ISPs obtain a prefix for:
 - themselves and
 - to sub-allocate it to their customers (as an LIR)
- ISPs request their prefix from the RIR
 - 1. How large allocation do you need?
 - /29 is now typical (or larger)
 - 2. What size of prefixes will you hand out to your customers?
 - Typical /48 per customer site
 - For BB subs the current best-practise is /56

Obtaining an IPv6 Prefix (2)

- The Enterprise view
 - Most likely not much experience dealing with RIRs
 - The multihoming requirement (and challenge)
 - Selecting Provider Independent vs. Provider Assigned
- Let go of an unnecessary "conservation" mindset.
 - An enterprise can and should get a "right-sized" allocation

Larger ISPs	Smaller ISPs		
	Larg <mark>er Enterprises</mark>	Smaller Enterprises	

Obtaining an IPv6 Prefix (3)

- Out-of-region announcements
 - No actual RIR policy that prohibits this
 - Some organizations running networks in other regions will want to obtain a regional IPv6 allocation as a precaution
 - Check with upstream ISP the accepted prefix length announcements
 - Usually /48 is ok (for now)

Examples of IPv6 Allocations

- Largest allocations
 - In the RIPE region*:
 - /19 Deustche Telecom, France Telecom, UK MoD
 - /20 Telia Sonera, Telecom Italia
 - In the ARIN region:
 - Service providers:
 - /20 Comcast
 - Enterprises:
 - /24 US Veterans Administration

2. SUBNETTING YOUR IPv6 ALLOCATION AND ASSIGNMENTS

What to consider when subnetting your IPv6 allocation

- Be sure to request a large enough allocation at the outset
 - Rule of thumb: /48 per site (for an Enterprise) /56 per BB CPE (for an ISP)
- Don't fall into the IPv4 mindset
 - No subnetting beyond the /64

Prefix	Subnet groups per /32	/48 subnets per group
/32	1	65,536
/36	16	4,096
/40	256	256
/44	4,096	16
/48	65,536	1

3. WORKING WITH STANDARD IPv6 SUBNET SIZES

The "best size" for an IPv6 subnet?

- Enterprise site allocation size: /48
- Point-to-point links and LAN interfaces: /64 or /127
 - Subnets smaller than /64 have appeared in some deployments for very specific use cases
- Loopbacks
 - One /64 and all loopbacks from it
 - Many /64s and keeping the Interface ID the same
 - In either case, /128 per loopback
 - (equivalent to /32 in IPv4)

4. NIBBLE BOUNDARY RULE

"Nibble boundary" benefits

- 2001:db8:1234:5678::/64
 Nibble = 4 bits = 1 HEX character
- Keep the addressing plan tidy
- Easy to recognise what portion of prefix is assigned and what we are working with
- Assists hierarchy of the plan, easier summarisation and security policies

Nibble boundaries when subnetting within a site

Prefix	Subnet groups per /48	/64 subnets per group
/48	1	65,536
/52	16	4,096
/56	256	256
/60	4,096	16
/64	65,536	1

Nibbles make IPv6 prefixes more legible

Subnet bits a multiple of 4		
Prefix:	2001:db8:1::/48	
Range:	2001:db8:1:0000:0000:0000:0000:0000 2001:db8:1:ffff:ffff:ffff:ffff	

Subnet bits not a multiple of 4		
Prefix:	2001:db8:1::/49	
Range:	2001:db8:1:0000:0000:0000:0000:0000 2001:db8:1:7fff:ffff:ffff:ffff 2001:db8:1:8000:0000:0000:0000:0000 2001:db8:1:ffff:ffff:ffff:ffff	

Mapping locations or functions into IPv6 address prefixes using nibbles

2001:db8:1:LXXX::[/52 - /64]

Location (16 sites) 2001:db8:1:[0-f]nnn::/52

Prefix	Assignment
2001:db8:1:0000::/52	Reserved
2001:db8:1:1000::/52	Building 1
2001:db8:1:2000::/52	Building 2
2001:db8:1:f000::/52	[Location 16]

Interface subnets (4096 per location) 2001:db8:1:n[0-f][0-f][0-f]::/64

Prefix	Assignment
2001:db8:1:1000::/64	Reserved
2001:db8:1:1001::/64	VLAN1
2001:db8:1:1002::/64	VLAN2
2001:db8:1:1fff::/64	[Subnet 4096]

- CAUTION! It's possible to overdo this approach...
 - There is a trade-off between the operational benefits of the approach and the flexibility of your addressing plan for growth and extensibility

5. CPE ADDRESSING

ISP approach to CPE addressing

- We started with /48 (<u>RFC 3177</u>)
 - Made obsolete by <u>RFC 6177</u>
- Now /56 per CPE is the best practise
- But the IETF Homenet working group is reconsidering /48
 - Prefix colouring (?)
- What do you think of SP Wi-fi and /64 per host?

For Your Reference

Other Influences in the Industry

- IETF Homenet & ISP's IPv6 Addressing
 - This WG focuses on supporting next-generation services on unmanaged home networks
 - In the center of their work is IPv6
 - Multiple ISP connections to the home
 - Example: broadband, VPN router, smart meters, home security etc.
 - Terminated at a CPE (6rd, DHCPv6-PD, MAP, static IPv6 etc.)
 - Not really impacting the ISP IPv6 addressing as it's behind the CPE
 - Rather realize the potential of prefix coloring & IPv6 Segment Routing
 - <u>Homenet presentation</u> @ UKNOF 27 (January 2014)

IETF v6 Ops & <u>Unique IPv6 Prefix Per Host</u>

- Large scale environments with the need to assign IPv6-prefix per host (E.g. SP Wi-Fi)
- Advantages:
 - Monitoring the prefix instead of IPv6 address
 - Host isolation (prefix has an Off-link flag set), limitation in ND communication
- Think about it from the perspective of the IPv6 prefix allocation from your RIR/LIR

- How many /64 are you going to need?

- This will impact the required allocation size
- presentation @ <u>UKNOF 33</u> (January 2016)

EXAMPLES OF ADDRESSING PLANS

A large enterprise plan summary

- 5 RIRs with IPv6 5 /32s (one per RIR)
- Region gets a /36 (15 /36s held in reserve)
- Core has core networks and external DMZs; /40s
- Countries have sites: i.e., grouping of buildings or single buildings at the same location; /40s
- Sites are /56s of /48s for applications; i.e., DHCP client(s), customer/printing/etc. environments
- Applications are /48s and they contain /64s (subnets)

ISP addressing plan (1)

ISP addressing plan (2)

ISP addressing plan (3)

SUMMARY & RESOURCES

Summary

- Obtaining an IPv6 Prefix
 - ISP vs. Enterprise; PI vs. PA
- Subnetting your IPv6 allocation and assignments
 - The right size for your organization's initial allocation
- Working with standard IPv6 subnet sizes
 - /64s, /48s, /128s, (possibly also /127s)
- "Nibble boundary" rules
 - Legibility of unique prefixes
- ISP approach to addressing CPEs
 - /56 vs. /48
- Examples of IPv6 addressing plans
 - Enterprise
 - ISP

Resources

- IPv6 Address Planning
 - Tom Coffeen, O'Reilly (<u>http://shop.oreilly.com/product/0636920033622.do</u>)
- How to write an IPv6 Addressing Plan
 - Veronika McKillop, Cisco Live breakout session BRKRST-2267
 - Recording: <u>www.ciscolive.com/online</u> (register for free and search for the session code)
- Create an Addressing Plan
 - RIPE NCC

https://www.ripe.net/publications/ipv6-info-centre/ deployment-planning/create-an-addressing-plan