
The Universal Fast Dataplane

A Fast Data Network Platform For Native Cloud

Network Services

2

Superior Performance

Most Efficient on the Planet

Flexible and Extensible

Open Source

Cloud Native

Breaking the Barrier of Software Defined Network Services
1 Terabit Services on a Single Intel® Xeon® Server !!!

EFFICIENCY

PERFORMANCE

SOFTWARE DEFINED NETWORKING

CLOUD NETWORK SERVICES

LINUX FOUNDATION

FD.io: The Universal Fast Dataplane

• Project at Linux Foundation
• Multi-party

• Multi-project

• Software Dataplane
• High throughput

• Low Latency

• Feature Rich

• Resource Efficient

• Bare Metal/VM/Container

• Multiplatform

fd.io	Foundation 3

Bare	Metal/VM/Container

• FD.io Scope
• Network IO – NIC/vNIC <-> cores/threads

• Packet Processing – Classify / Transform /

Prioritize / Forward / Terminate

• Dataplane Management Agents – Control Plane

Dataplane	Management	Agent

Packet	Processing

Network	IO

Fd.io in the overall stack

fd.io	Foundation 4

Hardware

Network	Controller

Orchestration

Operating	System

Data	Plane	Services

Application	Layer/App	Server

Packet	
Processing

Network	IO
Dataplane	

Management	Agent

Multiparty: Broad Membership

fd.io	Foundation 5

Service	Providers Network	Vendors Chip	Vendors

Integrators

Multiparty: Broad Contribution

fd.io	Foundation 6

Universitat Politècnica de	Catalunya (UPC)

Yandex

Qiniu

Code Activity

• In the period since its inception, fd.io has more commits than

OVS and DPDK combined, and more contributors than OVS

fd.io	Foundation 7

2016-02-11	to	
2017-04-03

Fd.io OVS DPDK

Commits 6283 2395 3289
Contributors 163 146 245
Organizations 42 52 78

0

5000

10000

Commits

Commits

fd.io OVS DPDK

0

200

400

Contributors

Contributors

fd.io OVS DPDK

0

50

100

Organizations

Organizations

fd.io OVS DPDK

Multiproject: Fd.io Projects

fd.io	Foundation 8

Honeycomb hc2vpp

Dataplane	Management	Agent

CSIT

puppet-fdio

trex

Testing/Support

NSH_SFC ONE TLDK

odp4vppCICN VPP	Sandbox

VPP

Packet	Processing

deb_dpdk rpm_dpdk

Network	IO

Fd.io Integrations

fd.io	Foundation 9

VPP

Co
nt
ro
l	P
la
ne

D
at
a	
Pl
an
e

Honeycomb

Netconf/Yang

VBD app
Lispflowmapping

app

LISP	Mapping	Protocol

SFC

Netconf/yang

Openstack

Neutron

ODL
Plugin

Fd.io
Plugin

Fd.io ML2 Agent

REST

GBP app

Integration	work	done	at

Vector Packet Processor - VPP

• Packet Processing Platform

• High performance

• Linux User space

• Run’s on commodity CPUs: / /

• Shipping at volume in server & embedded

products since 2004.

fd.io	Foundation 10

Bare	Metal/VM/Container

Dataplane	Management	Agent

Packet	Processing

Network	IO

Aside [1/4]: Computer Evolution For Packet Processing
It started with ALU …

An	Arithmetic	Logic	Unit	(ALU)
(1)	It	started	simple	…

*	Intel	Top-Down	Microarchitecture	Analysis	Method	for	tuning	applications,	https://software.intel.com/en-us/top-down-microarchitecture-analysis-method-win

(3)	Then	it	got	much	faster	…
A	modern	two	CPU	socket	server

A

C

D A

B

(4)	…	but	far	from	simple	!
The	pipeline	of	a	modern	high-performance	XEON	CPU*

A	simple	generic	purpose	computer
(2)	Became	universal	and	faster	…

An	Arithmetic	Logic	Unit	(ALU)
(1)	It	started	simple	…

*	Intel	Top-Down	Microarchitecture	Analysis	Method	for	tuning	applications,	https://software.intel.com/en-us/top-down-microarchitecture-analysis-method-win

(3)	Then	it	got	much	faster	…
A	modern	two	CPU	socket	server

(4)	…	but	far	from	simple	!
The	pipeline	of	a	modern	high-performance	XEON	CPU*

A	simple	generic	purpose	computer
(2)	Became	universal	and	faster	…

Aside [2/4]: Computer Evolution For Packet Processing
… and we arrived to modern multi-socket COTS server …

A

C

D A

B

An	Arithmetic	Logic	Unit	(ALU)
(1)	It	started	simple	…

*	Intel	Top-Down	Microarchitecture	Analysis	Method	for	tuning	applications,	https://software.intel.com/en-us/top-down-microarchitecture-analysis-method-win

(3)	Then	it	got	much	faster	…
A	modern	two	CPU	socket	server

(4)	…	but	far	from	simple	!
The	pipeline	of	a	modern	high-performance	XEON	CPU*

A	simple	generic	purpose	computer
(2)	Became	universal	and	faster	…

A. CPUs	executing	the	program(s):
a)Minimize Instructions	per	Packet – Efficient	software	logic	to	perform	needed	packet	operations.
b)Maximize Instructions	per	CPU	core	clock	cycle – Execution	efficiency	of	an	underlying	CPU	micro-architecture.

B. Memory	bandwidth:Minimizememory	bandwidth	utilization	– Memory	access	is	slow.
C. Network	I/O	bandwidth:	Make	efficient	use	of	PCIe	I/O	bandwidth – It	is	a	limited	resource.
D. Inter-socket	transactions:	Minimize cross-NUMA	connection	utilization – It	slows	things	down.

Four	main	functional	dimensions	important	for	processing	packets:

Hint:	Start	with	optimizing	the	use	of	CPU	micro-architecture	=>	Use	vectors !

A

C

D A

B

Aside [2/4]: Computer Evolution For Packet Processing
… and we arrived to modern multi-socket COTS server …

VPP Architecture: Vector Packet Processing
Packet

Vector	of	n	packets

ethernet-input

dpdk-input vhost-user-input af-packet-input

ip4-inputip6-input arp-input

ip6-lookup ip4-lookup

ip6-localip6-rewrite ip4-rewriteip4-local

mpls-input

…

…

Packet	Processing	
Graph

Graph	Node

Input	Graph	Node

0 1 32 … n

VPP Architecture: Splitting the Vector
Packet

Vector	of	n	packets

ethernet-input

dpdk-input vhost-user-input af-packet-input

ip4-inputip6-input arp-input

ip6-lookup ip4-lookup

ip6-localip6-rewrite ip4-rewriteip4-local

mpls-input

…

…

Packet	Processing	
Graph

Graph	Node

Input	Graph	Node

20 1 3 … n

VPP Architecture: Plugins

0 1 32 … n

Packet

Vector	of	n	packets

ethernet-input

dpdk-input vhost-user-input af-packet-input

ip4-inputip6-input arp-input

ip6-lookup ip4-lookup

ip6-localip6-rewrite ip4-rewriteip4-local

mpls-input

…

…

custom-1

custom-2 custom-3

Packet	Processing	
Graph

Graph	Node

Input	Graph	Node

/usr/lib/vpp_plugins/foo.so
Plugin Plugins	are:	

First	class	citizens
That	can:

Add	graph	nodes
Add	API
Rearrange	the	graph	

Hardware	Plugin

hw-accel-input

Skip	software	nodes
where	work	is	done	by
hardware	already

Can	be	built	independently	
of	VPP	source	tree

An	Arithmetic	Logic	Unit	(ALU)
(1)	It	started	simple	…

*	Intel	Top-Down	Microarchitecture	Analysis	Method	for	tuning	applications,	https://software.intel.com/en-us/top-down-microarchitecture-analysis-method-win

(3)	Then	it	got	much	faster	…
A	modern	two	CPU	socket	server

(4)	…	but	far	from	simple	!
The	pipeline	of	a	modern	high-performance	XEON	CPU*

A	simple	generic	purpose	computer
(2)	Became	universal	and	faster	…

A

C

D A

B

Aside [3/4]: Computer Evolution For Packet Processing
… we then optimize software for network workloads ...

An	Arithmetic	Logic	Unit	(ALU)
(1)	It	started	simple	…

*	Intel	Top-Down	Microarchitecture	Analysis	Method	for	tuning	applications,	https://software.intel.com/en-us/top-down-microarchitecture-analysis-method-win

(3)	Then	it	got	much	faster	…
A	modern	two	CPU	socket	server

(4)	…	but	far	from	simple	!
The	pipeline	of	a	modern	high-performance	XEON	CPU*

A	simple	generic	purpose	computer
(2)	Became	universal	and	faster	…

A

C

D A

B

• Network workloads are very different from
compute ones

• They are all about processing packets, at rate.

• At 10GE, 64B packets can arrive at 14.88Mpps

=> 67 nsec per packet.

• With 2GHz CPU core clock cycle is 0.5nsec

=> 134 clock cycles per packet.

• To access memory it takes ~70nsec

=> too slow to do it per packet !

• Packet processing efficiency is essential
• Moving packets

• Packets arrive on physical interfaces (NICs) and virtual

interfaces (VNFs) - need CPU optimized drivers for both.

• Drivers and buffer management software must not rely on

memory access – see time budget above, MUST use CPU core

caching hierarchy well.

• Processing packets
• Need packet processing optimized for CPU platforms.

• Header manipulation, encaps/decaps, lookups, classifiers,

counters.

Aside [3/4]: Computer Evolution For Packet Processing
… we then optimize software for network workloads ...

An	Arithmetic	Logic	Unit	(ALU)
(1)	It	started	simple	…

(3)	Then	it	got	much	faster	…
A	modern	two	CPU	socket	server

A	simple	generic	purpose	computer
(2)	Became	universal	and	faster	…

A

C

D A

B

• Network workloads are very different from
compute ones

• They are all about processing packets, at rate.

• At 10GE, 64B packets can arrive at 14.88Mpps

=> 67 nsec per packet.

• With 2GHz CPU core clock cycle is 0.5nsec

=> 134 clock cycles per packet.

• To access memory it takes ~70nsec

=> too slow to do it per packet !

• Packet processing efficiency is essential
• Moving packets

• Packets arrive on physical interfaces (NICs) and virtual

interfaces (VNFs) - need CPU optimized drivers for both.

• Drivers and buffer management software must not rely on

memory access – see time budget above, MUST use CPU core

caching hierarchy well.

• Processing packets
• Need packet processing optimized for CPU platforms.

• Header manipulation, encaps/decaps, lookups, classifiers,

counters.

PCIe

CPU Cores

CPU Socket

M
em

ory	
Controller

DDR	SDRAM

Memory
Channels

LLC

Core	operations
NIC	packet	operations
NIC	descriptor	operations

1

rxd
txd

packet

2
3

4

5

6

8
7

9 10

11
12

13

NICs

No-to-Minimal	memory
bandwidth	per	packet.

(4a)	…	let’s	make	it Simple	Again!AND	=>

Aside [3/4]: Computer Evolution For Packet Processing
… we then optimize software for network workloads ...

An	Arithmetic	Logic	Unit	(ALU)
(1)	It	started	simple	…

(3)	Then	it	got	much	faster	…
A	modern	two	CPU	socket	server

A	simple	generic	purpose	computer
(2)	Became	universal	and	faster	…

A

C

D A

B

PCIe

CPU Cores

CPU Socket

M
em

ory	
Controller

DDR	SDRAM

Memory
Channels

LLC

Core	operations
NIC	packet	operations
NIC	descriptor	operations

1

rxd
txd

packet

2
3

4

5

6

8
7

9 10

11
12

13

NICs

No-to-Minimal	memory
bandwidth	per	packet.

(4a)	…	let’s	make	it Simple	Again!AND	=>

Aside [4/4]: Computer Evolution For Packet Processing
… and use FD.io VPP to make them fast for packets.

ethernet-input

dpdk-input vhost-user-input af-packet-input

ip4-inputip6-input arp-input

ip6-lookup ip4-lookup

ip6-localip6-rewrite ip4-rewriteip4-local

mpls-input

…

…

Vector	Packet	Processing
software	worker	thread

(1) Core	writes	Rx	descriptor	in	preparation	for	receiving	a	packet.
(2) NIC	reads	Rx		descriptor	to	get	ctrl	flags	and	buffer	address.
(3) NIC	writes	the	packet.
(4) NIC	writes	Rx	descriptor.
(5) Core	reads	Rx	descriptor	(polling	or	irq	or	coalesced	irq).
(6) Core	reads	packet	header	to	determine	action.
(7) Core	performs	action	on	packet	header.
(8) Core	writes	packet	header	(MAC	swap,	TTL,	tunnel,	foobar..)
(9) Core	reads	Tx	descriptor.
(10) Core	writes	Tx	descriptor	and	writes	Tx	tail	pointer.
(11) NIC	reads	Tx	descriptor.
(12) NIC	reads	the	packet.
(13) NIC	writes	Tx	descriptor.

An	Arithmetic	Logic	Unit	(ALU)
(1)	It	started	simple	…

(3)	Then	it	got	much	faster	…
A	modern	two	CPU	socket	server

A	simple	generic	purpose	computer
(2)	Became	universal	and	faster	…

A

C

D A

B

PCIe

CPU Cores

CPU Socket

M
em

ory	
Controller

DDR	SDRAM

Memory
Channels

LLC

Core	operations
NIC	packet	operations
NIC	descriptor	operations

1

rxd
txd

packet

2
3

4

5

6

8
7

9 10

11
12

13

NICs

No-to-Minimal	memory
bandwidth	per	packet.

(4a)	…	let’s	make	it Simple	Again!AND	=>

ethernet-input

dpdk-input vhost-user-input af-packet-input

ip4-inputip6-input arp-input

ip6-lookup ip4-lookup

ip6-localip6-rewrite ip4-rewriteip4-local

mpls-input

…

…

Vector	Packet	Processing
software	worker	thread

(1) Core	writes	Rx	descriptor	in	preparation	for	receiving	a	packet.
(2) NIC	reads	Rx		descriptor	to	get	ctrl	flags	and	buffer	address.
(3) NIC	writes	the	packet.
(4) NIC	writes	Rx	descriptor.
(5) Core	reads	Rx	descriptor	(polling	or	irq	or	coalesced	irq).
(6) Core	reads	packet	header	to	determine	action.
(7) Core	performs	action	on	packet	header.
(8) Core	writes	packet	header	(MAC	swap,	TTL,	tunnel,	foobar..)
(9) Core	reads	Tx	descriptor.
(10) Core	writes	Tx	descriptor	and	writes	Tx	tail	pointer.
(11) NIC	reads	Tx	descriptor.
(12) NIC	reads	the	packet.
(13) NIC	writes	Tx	descriptor.

þ

þ

þ

þ
þ

Steps	1-to-13	in	a	Nutshell:

ü VPP	software	worker	threads	run	on	CPU	cores.	
ü Use	local	caching	with	No-to-Minimal	memory	bandwidth	per	packet.
ü Get	speed	with	predictive	prefetching	and	smart	algos.
ü And	make	CPU	cache	hierarchy	always	“Hot”	=>	Packet	processing	at	rate.

Making	VPP	simply	tick	the	A-B-C-D	server	optimization	points	!

Aside [4/4]: Computer Evolution For Packet Processing
… and use FD.io VPP to make them fast for packets.

• Let’s look at performance data at scale

• Packet throughput for

• IPv4 routing,

• IPv6 routing,

• L2 switching,

• L2 switching with VXLAN tunnelling.

VPP Universal Fast Dataplane: Performance at Scale [1/2]
Per CPU core throughput with linear multi-thread(-core) scaling

Hardware:
Cisco UCS C240 M4

Intel® C610 series chipset

2 x Intel® Xeon® Processor E5-2698

v3 (16 cores, 2.3GHz, 40MB Cache)

2133 MHz, 256 GB Total

6 x 2p40GE Intel XL710=12x40GE

64B

128B

I/O	NIC	max-pps0.0

50.0

100.0

150.0

200.0

250.0

2x	40GE
2	core 4x	40GE

4	core 6x	40GE
6	core 8x	40GE

8	core 10x	40GE
10	core 12x	40GE

12	core

No.	of	Interfaces
No.	of	CPU Cores

Frame
Size

[Bytes]

Service	Scale	=	1	million	IPv4	route	entries

Packet	Throughput	[Mpps]
NDR - Zero	Frame	Loss

64B

128B

IMIX

1518B
I/O	NIC	max-bw

0.0

50.0

100.0

150.0

200.0

250.0

300.0

2x	40GE
2	core

4x	40GE
4	core 6x	40GE

6	core 8x	40GE
8	core 10x	40GE

10	core 12x	40GE
12	core

Packet	Throughput	[Gbps]
NDR - Zero	Frame	Loss

Frame
Size

[Bytes]No.	of	Interfaces
No.	of	CPU Cores

Service	Scale	=	1	million	IPv4	route	entries

64B

128B

I/O	NIC	max-pps0.0

50.0

100.0

150.0

200.0

250.0

2x	40GE
2	core 4x	40GE

4	core 6x	40GE
6	core 8x	40GE

8	core 10x	40GE
10	core 12x	40GE

12	core

No.	of	Interfaces
No.	of	CPU Cores

Frame
Size

[Bytes]

Service	Scale	=	0.5	million	IPv6	route	entries

Packet	Throughput	[Mpps]
NDR - Zero	Frame	Loss

64B

128B

IMIX

1518B
I/O	NIC	max-bw

0.0

50.0

100.0

150.0

200.0

250.0

300.0

2x	40GE
2	core

4x	40GE
4	core 6x	40GE

6	core 8x	40GE
8	core 10x	40GE

10	core 12x	40GE
12	core

Packet	Throughput	[Gbps]
NDR - Zero	Frame	Loss

Frame
Size

[Bytes]No.	of	Interfaces
No.	of	CPU Cores

Service	Scale	=	0.5	million	IPv6	route	entries

actual	m-core	scaling	
(mid-points	interpolated)

24 45.36 66.72 88.08 109.44 130.8

IPv4	Thput	[Mpps] 2x	40GE
2	core

4x	40GE
4	core

6x	40GE
6	core

8x	40GE
8	core

10x	40GE
10	core

12x	40GE
12	core

64B 24.0 45.4 66.7 88.1 109.4 130.8
128B 24.0 45.4 66.7 88.1 109.4 130.8
IMIX 15.0 30.0 45.0 60.0 75.0 90.0
1518B 3.8 7.6 11.4 15.2 19.0 22.8

I/O	NIC	max-pps
35.8 71.6 107.4 143.2 179 214.8

NIC	max-bw 46.8 93.5 140.3 187.0 233.8 280.5

actual	m-core	scaling	
(mid-points	interpolated)

19.2 35.36 51.52 67.68 83.84 100

IPv6	Thput	[Mpps]
2x	40GE
2	core

4x	40GE
4	core

6x	40GE
6	core

8x	40GE
8	core

10x	40GE
10	core

12x	40GE
12	core

64B 19.2 35.4 51.5 67.7 83.8 100.0
128B 19.2 35.4 51.5 67.7 83.8 100.0
IMIX 15.0 30.0 45.0 60.0 75.0 90.0
1518B 3.8 7.6 11.4 15.2 19.0 22.8

I/O	NIC	max-pps
35.8 71.6 107.4 143.2 179 214.8

NIC	max-bw 46.8 93.5 140.3 187.0 233.8 280.5

Packet	Traffic	
Generator

12x	40GE
interfaces

Topology:
Phy-VS-Phy

Software
Linux: Ubuntu 16.04.1 LTS

Kernel: ver. 4.4.0-45-generic
FD.io VPP: VPP v17.01-

5~ge234726 (DPDK 16.11)

Resources
1 physical CPU core per 40GE port

Other CPU cores available for other

services and other work

20 physical CPU cores available in

12x40GE seupt

Lots of Headroom for much more

throughput and features

64B

128B

I/O	NIC	max-pps0.0

50.0

100.0

150.0

200.0

250.0

2x	40GE
2	core 4x	40GE

4	core 6x	40GE
6	core 8x	40GE

8	core 10x	40GE
10	core 12x	40GE

12	core

No.	of	Interfaces
No.	of	CPU Cores

Frame
Size

[Bytes]

Service	Scale	=	16	thousand	MAC	L2	entries

Packet	Throughput	[Mpps]
NDR - Zero	Frame	Loss

64B

128B

I/O	NIC	max-pps
0.0

50.0

100.0

150.0

200.0

250.0

2x	40GE
2	core 4x	40GE

4	core 6x	40GE
6	core 8x	40GE

8	core 10x	40GE
10	core 12x	40GE

12	core

No.	of	Interfaces
No.	of	CPU Cores

Frame
Size

[Bytes]

Service	Scale	=	100	thousand	MAC	L2	entries

Packet	Throughput	[Mpps]
NDR - Zero	Frame	Loss

64B

128B

IMIX

1518B

I/O	NIC	max-bw

0.0

50.0

100.0

150.0

200.0

250.0

300.0

2x	40GE
2	core 4x	40GE

4	core 6x	40GE
6	core 8x	40GE

8	core 10x	40GE
10	core 12x	40GE

12	core

Packet	Throughput	[Gbps]
NDR - Zero	Frame	Loss

Frame
Size

[Bytes]No.	of	Interfaces
No.	of	CPU Cores

Service	Scale	=	100	thousand	MAC	L2	entries

64B

128B

IMIX

1518B
I/O	NIC	max-bw

0.0

50.0

100.0

150.0

200.0

250.0

300.0

2x	40GE
2	core

4x	40GE
4	core 6x	40GE

6	core 8x	40GE
8	core 10x	40GE

10	core 12x	40GE
12	core

Packet	Throughput	[Gbps]
NDR - Zero	Frame	Loss

Frame
Size

[Bytes]No.	of	Interfaces
No.	of	CPU Cores

Service	Scale	=	16	thousand	MAC	L2	entries

actual	m-core	scaling	
(mid-points	interpolated)

11.6 25.12 38.64 52.16 65.68 79.2

MAC	Thput	[Mpps]
2x	40GE
2	core

4x	40GE
4	core

6x	40GE
6	core

8x	40GE
8	core

10x	40GE
10	core

12x	40GE
12	core

64B 11.6 25.1 38.6 52.2 65.7 79.2
128B 11.6 25.1 38.6 52.2 65.7 79.2
IMIX 10.5 21.0 31.5 42.0 52.5 63.0
1518B 3.8 7.6 11.4 15.2 19.0 22.8

I/O	NIC	max-pps
35.8 71.6 107.4 143.2 179 214.8

NIC	max-bw 46.8 93.5 140.3 187.0 233.8 280.5

actual	m-core	scaling	
(mid-points	interpolated)

20.8 38.36 55.92 73.48 91.04 108.6

MAC	Thput	[Mpps]
2x	40GE
2	core

4x	40GE
4	core

6x	40GE
6	core

8x	40GE
8	core

10x	40GE
10	core

12x	40GE
12	core

64B 20.8 38.4 55.9 73.5 91.0 108.6
128B 20.8 38.4 55.9 73.5 91.0 108.6
IMIX 15.0 30.0 45.0 60.0 75.0 90.0
1518B 3.8 7.6 11.4 15.2 19.0 22.8

I/O	NIC	max-pps
35.8 71.6 107.4 143.2 179 214.8

NIC	max-bw 46.8 93.5 140.3 187.0 233.8 280.5

Hardware:
Cisco UCS C240 M4

Intel® C610 series chipset

2 x Intel® Xeon® Processor E5-2698

v3 (16 cores, 2.3GHz, 40MB Cache)

2133 MHz, 256 GB Total

6 x 2p40GE Intel XL710=12x40GE

Packet	Traffic	
Generator

12x	40GE
interfaces

Topology:
Phy-VS-Phy

Software
Linux: Ubuntu 16.04.1 LTS

Kernel: ver. 4.4.0-45-generic
FD.io VPP: VPP v17.01-

5~ge234726 (DPDK 16.11)

Resources
1 physical CPU core per 40GE port

Other CPU cores available for other

services and other work

20 physical CPU cores available in

12x40GE seupt

Lots of Headroom for much more

throughput and features

VPP Universal Fast Dataplane: Performance at Scale [2/2]
Per CPU core throughput with linear multi-thread(-core) scaling

Native Cloud Network Services – Sample Use Cases
Based on supported FD.io VPP functionality

Substantial Performance and Efficiency Gains vs. Alternatives

SD-WAN and DC Overlays
• IPVPN, L2VPN, IPSec/SSL encryption

• Scaleable L2 switching and IPv4/IPv6 routing vNFs

Million Routes Scale and Service Features
• Performance at Max Network I/O of Intel® Xeon® Server

SECURE PRIVATE NETWORKING

CG-NAT and Softwires
• Carrier Grade NAT for Subscriber IPv4 Addressing Control

• Softwires for Subscriber IPv4 over IPv6 Transport

Million of Subscribers and Service Features
• Performance at Max Network I/O of Intel® Xeon® Server

SUBSCRIBER MANAGEMENT

SECURE PRIVATE
NETWORKING

SUBSCRIBER
MANAGEMENT

PRODUCTION
GRADE

SD-WAN – with FD.io Universal Fast Data Plane
S

E
R

V
IC

E
 V

IE
W

Sites 1..N

Enterprise1

Enterprise2

Enterprise3

Software Defined – WAN

Sites 1..N

Sites 1..N

IPVPN and L2VPN Overlays*, IPSec/SSL Crypto

IPVPN and L2VPN Overlays*, IPSec/SSL Crypto

IPVPN and L2VPN Overlays*, IPSec/SSL Crypto

Site 1 Site N
Enterprise1

Enterprise2

Enterprise3

Site 1 Site N

Site 1 Site N

IP Network
Private or Public Data Center1

Data Center2

SD-WAN Hub

SD-WAN Hub

Server
CPUs

Net I/O

Crypto I/O

Server
CPUs

Net I/O

Crypto I/O

Server
CPUs

Net I/O

Crypto I/O

Server
CPUs

Net I/O

Crypto I/O

FD.io Fast Network Data Plane

HQ-to-HQ

Branch-to-HQ

Branch-to-Branch

Secure and Fast Private Networking HQ-to-PrivateCloud

Branch-to-PrivateCloud

HomeUser-to-PrivateCloud

FD.io SD-WAN Service Properties:
A. Native cloud network data plane

B. Fast and Efficient
C. Over 20GE of net I/O per CPU core

vRouter vNF

vNF Services

vRouter vNF

vRouter vNF

vNF Services

vNF Services

*Overlay encapsulations: VXLAN, LISP GPE

P
H

Y
S

IC
A

L
 V

IE
W

FD.io Fast Network Data Plane

S
E

R
V

IC
E

 V
IE

W

Sites 1..N

Enterprise1

Enterprise2

Enterprise3

Software Defined – WAN

Sites 1..N

Sites 1..N

IPVPN and L2VPN Overlays*, IPSec/SSL Crypto

IPVPN and L2VPN Overlays*, IPSec/SSL Crypto

IPVPN and L2VPN Overlays*, IPSec/SSL Crypto

vRouter vNF

vNF Services

vRouter vNF

vRouter vNF

vNF Services

vNF Services

P
H

Y
S

IC
A

L
 V

IE
W

10GE
1-4

IPv4/v6

Sites 1..N

IPv4/v6

Sites 1..N

IPv4/v6

Sites 1..N

25GE
5-8

100GE
9

2CPU

Network I/O 480 Gbps

Crypto I/O 100 Gbps

10GE 25GE 100GE

4x 4x 1x
100GE2x

25GE2x

Host-1 – Server-SKL

2CPU

Network I/O 480 Gbps

Crypto I/O 100 Gbps

100GE x2

25GE x2

Host-2 – Server-SKL

10GE
1-4

IPv4/v6

Services

IPv4/v6

Services

IPv4/v6

Services

25GE
5-8

100GE
9

10GE 25GE 100GE

4x 4x 1x

IP Network
Private or Public

*Overlay encapsulations: VXLAN, LISP GPE

SD-WAN – with FD.io Universal Fast Data Plane

SD-WAN – with FD.io Universal Fast Data Plane

FD.io Fast Network Data PlaneFast SD-WAN Services – with FD.io Fast Network Data Plane

S
E

R
V

IC
E

 V
IE

W

Sites 1..N

Enterprise1

Enterprise2

Enterprise3

Software Defined – WAN

Sites 1..N

Sites 1..N

IPVPN and L2VPN Overlays*, IPSec/SSL Crypto

IPVPN and L2VPN Overlays*, IPSec/SSL Crypto

IPVPN and L2VPN Overlays*, IPSec/SSL Crypto

vRouter vNF

vNF Services

vRouter vNF

vRouter vNF

vNF Services

vNF Services

P
H

Y
S

IC
A

L
 V

IE
W

10GE
1-4

IPv4/v6

Sites 1..N

IPv4/v6

Sites 1..N

IPv4/v6

Sites 1..N

25GE
5-8

100GE
9

2CPU

Network I/O 480 Gbps

Crypto I/O 100 Gbps

10GE 25GE 100GE

4x 4x 1x
100GE2x

25GE4x

Host-1 – Server-SKL

2CPU

Network I/O 480 Gbps

Crypto I/O 100 Gbps

100GE x2

25GE x4

Host-2 – Server-SKL

10GE
1-4

IPv4/v6

Services

IPv4/v6

Services

IPv4/v6

Services

25GE
5-8

100GE
9

10GE 25GE 100GE

4x 4x 1x

IP Network
Private or Public

*Overlay encapsulations: VXLAN, LISP GPE

28

Breaking the Barrier of Software Defined Network Services
1 Terabit Services on a Single Intel® Xeon® Server !!!

VPP enables linear multi-thread(-core) scaling

up to the packet I/O limit per CPU => on a path to one terabit software router (1TFR).

Scaling Up The Packet Throughput with FD.io VPP
Can we squeeze more from a single 2RU server ?

29

Breaking the Barrier of Software Defined Network Services
1 Terabit Services on a Single Intel® Xeon® Server !!!

320

640

1280

560

1120

2240

0

500

1000

1500

2000

2500

1	CPU	Socket	(numa0) 2	CPU	Sockets	(numa0	+	numa1) 2x	[2	CPU	Sockets	(numa0	+	numa1)]

PC
Ie
	G
en

3	
Pa

yl
oa

d	
Ba

cn
dw

id
th
	[G

bp
s]
	

(T
x+
Rx
	A
gg
re
ga
te
)

PCI	Gen3	Payload	Bandwidth	Available	for	Packet	Networking	I/O	
for	Different	CPU	Configurations

XEON	v3,v4	CPUs XEON	next-gen	CPUs

1.Today’s	Intel®	XEON®	CPUs	(E5	v3/v4):
a. Per	socket	have	40	lanes	of	PCIe	Gen3
b. 2x	160Gbps of	packet	I/O	per	socket

2. Tomorrow’s	Intel®	XEON®	CPUs:
a. Per	socket	support	More	lanes	of	PCIe	Gen3
b. 2x	280Gbps of	packet	I/O	per	socket

fd.io	Foundation 30

VPP Architecture: Programmability

Linux	Hosts

Architecture Example:	Honeycomb

Agent VPP

Shared	Memory

…

…
Request	Queue

Response	Queue

Request	Message
900k	request/s

Async Response	Message

Linux	Hosts

Honeycomb
Agent

VPP

Shared	Memory

…

…
Request	Queue

Response	Queue

Request	Message

Async Response	Message

Netconf/Restconf/YangControl	Plane	Protocol

Can	use	C/Java/Python/or	Lua
Language	bindings

Universal Fast Dataplane: Features

31

Tunnels/Encaps
GRE/VXLAN/VXLAN-GPE/LISP-GPE
NSH,	L2TPv3,	SRv6
IPSec	Tunnel,	Transport

Including	HW	offload	if	present

Interfaces

DPDK/Netmap/AF_Packet/TunTap
Vhost-user	- multi-queue,	reconnect,
Jumbo	Frame	Support

MPLS

MPLS	over	Ethernet/GRE
Deep	label	stacks	supported

Segment	Routing

SR	MPLS/IPv6
Including	Multicast

Inband iOAM

Telemetry	export	infra	(raw	IPFIX)
iOAM for	VXLAN-GPE	(NGENA)
SRv6	and	iOAM co-existence
iOAM proxy	mode	/	caching
iOAM probe	and	responder	

LISP

LISP	xTR/RTR
L2	Overlays	over	LISP	and	GRE	encaps
Multitenancy
Multihome
Map/Resolver	Failover
Source/Dest control	plane	support
Map-Register/Map-Notify/RLOC-probing
IPSec	transport	mode

Language	Bindings

C/Java/Python/Lua

Hardware	Platforms

Pure	Userspace	- X86,ARM	32/64,Power
Raspberry	Pi

Routing

IPv4/IPv6
14+	MPPS,	single	core
Hierarchical	FIBs
Multimillion	FIB	entries
Source	RPF
Thousands	of	VRFs

Controlled	cross-VRF	lookups
Multipath	– ECMP	and	Unequal	Cost
IP	Multicast

Network	Services
DHCPv4	client/proxy
DHCPv6	Proxy
MAP/LW46	– IPv4aas
CGNAT
MagLev-like	Load	Balancer
Identifier	Locator	Addressing
NSH	SFC	SFF’s	&	NSH	Proxy
LLDP
BFD
QoS	Policer	1R2C,	2R3C
Multiple	million	Classifiers	–

Arbitrary	N-tuple

Switching

VLAN	Support
Single/	Double	tag
L2	forwd w/EFP/BridgeDomain concepts

VTR	– push/pop/Translate	(1:1,1:2,	2:1,2:2)
Mac	Learning	– default	limit	of	50k	addr
Bridging	
Split-horizon	group	support/EFP	Filtering

Proxy	Arp
Arp	termination
IRB	- BVI	Support	with	RouterMac assigmt
Flooding
Input	ACLs
Interface	cross-connect
L2	GRE	over	IPSec tunnels

Monitoring

Simple	Port	Analyzer	(SPAN)
IP	Flow	Export	(IPFIX)
Counters	for	everything
Lawful	Intercept

Security

Mandatory	Input	Checks:
TTL	expiration
header	checksum
L2	length	<	IP	length
ARP	resolution/snooping
ARP	proxy

NAT
Ingress	Port	Range	Filtering
Per	interface	whitelists
Policy/Security	Groups/GBP	(Classifier)

32

Rapid Release Cadence – ~3 months

16-02
Fd.io	launch

16-06
Release- VPP

16-09
Release:
VPP,	Honeycomb,	
NSH_SFC,	ONE

17-01
Release:
VPP,	Honeycomb,	
NSH_SFC,	ONE

16-06	New	Features

Enhanced	Switching	&	Routing
IPv6	SR	multicast	support
LISP	xTR support
VXLAN	over	IPv6	underlay
per	interface	whitelists
shared	adjacencies	in	FIB

Improves	interface	support
vhost-user	– jumbo	frames
Netmap interface	support
AF_Packet interface	support

Improved	programmability
Python	API	bindings
Enhanced	JVPP	Java	API	bindings
Enhanced	debugging	cli

Hardware	and	Software	Support
Support	for	ARM	32	targets
Support	for	Raspberry	Pi
Support	for	DPDK	16.04

16-09	New	Features

Enhanced	LISP	support	for
L2	overlays
Multitenancy
Multihoming
Re-encapsulating	Tunnel	Routers	
(RTR)	support

Map-Resolver	failover	algorithm
New	plugins	for
SNAT
MagLev-like	Load
Identifier	Locator	Addressing
NSH	SFC	SFF’s	&	NSH	Proxy

Port	range	ingress	filtering
Dynamically	ordered	subgraphs

17-01	New	Features

Hierarchical	FIB
Performance	Improvements
DPDK	input	and	output	nodes
L2	Path
IPv4	lookup	node

IPSEC
Softwand HWCrypto Support

HQoS support
Simple	Port	Analyzer	(SPAN)
BFD
IPFIX	Improvements
L2	GRE	over	IPSec tunnels
LLDP
LISP	Enhancements
Source/Dest control	plane
L2	over	LISP	and	GRE
Map-Register/Map-Notify
RLOC-probing

ACL
Flow	Per	Packet
SNAT	– Multithread,	Flow	Export
LUA	API	Bindings

33

New in 17.04 – Released Apr 19

VPP	Userspace	Host	Stack

TCP	stack
DHCPv4	relay	multi-destination
DHCPv4	option	82
DHCPv6	relay	multi-destination
DHPCv6	relay	remote-id
ND	Proxy

NAT

CGN:	Configurable	port	allocation
CGN:	Configurable	Address	pooling
CPE:	External	interface	
DHCP	support
NAT44,	NAT64,	LW46

Stateful	Security	Groups

Routed	interface	support
L4	filters	with	IPv6	Extension	Headers

API

Move	to	CFFI	for	Python	binding
Python	Packaging	improvements
CLI	over	API
Improved	C/C++	language	binding

Segment	Routing	v6

SR	policies	with	weighted	SID	lists
Binding	SID
SR	steering	policies
SR	LocalSIDs
Framework	to	expand	local	SIDs	w/plugins

iOAM

UDP	Pinger w/path	fault	isolation
IOAM	as	type	2	metadata	in	NSH
IOAM	raw	IPFIX	collector	and	analyzer
Anycast active	server	selection

IPFIX

Collect	IPv6	information
Per	flow	state

Images	at:		https://nexus.fd.io/

Release	notes:	https://docs.fd.io/vpp/17.04/release_notes_1704.html

Continuous Quality, Performance, Usability
Built into the development process – patch by patch

34

Submit
Automated

Verify
Code	Review Merge

Publish	
Artifacts

System	Functional	Testing
252	Tests/Patch

DHCP	– Client	and	Proxy
GRE	Overlay	Tunnels
L2BD	Ethernet	Switching
L2	Cross	Connect	Ethernet	Switching
LISP	Overlay	Tunnels
IPv4-in-IPv6	Softwire Tunnels
Cop	Address	Security
IPSec
IPv6	Routing	– NS/ND,	RA,	ICMPv6
uRPF Security
Tap	Interface
Telemetry	– IPFIX	and	Span
VRF	Routed	Forwarding
iACL Security	– Ingress	– IPv6/IPv6/Mac
IPv4	Routing
QoS Policer	Metering
VLAN	Tag	Translation
VXLAN	Overlay	Tunnels

Performance	Testing
144	Tests/Patch,	841	Tests

L2	Cross	Connect
L2	Bridging
IPv4	Routing
IPv6	Routing
IPv4	Scale	– 20k,200k,2M	FIB	Entries
IPv4	Scale	- 20k,200k,2M	FIB	Entries
VM	with	vhost-userr

PHYS-VPP-VM-VPP-PHYS
L2	Cross	Connect/Bridge
VXLAN	w/L2	Bridge	Domain
IPv4	Routing

COP	– IPv4/IPv6	whiteless
iACL – ingress	IPv4/IPv6	ACLs
LISP	– IPv4-o-IPv6/IPv6-o-IPv4
VXLAN
QoS Policer
L2	Cross	over
L2	Bridging

Usability

Merge-by-merge:
apt	installable	deb	packaging
yum	installable	rpm	packaging
autogenerated code	documentation
autogenerated cli	documentation

Per	release:
autogenerated testing	reports

report	perf	improvements
Puppet	modules
Training/Tutorial	videos
Hands-on-usecase documentation

Build/Unit	Testing
120	Tests/Patch

Build	binary	packaging	for
Ubuntu	14.04
Ubuntu	16.04
Centos	7

Automated	Style	Checking
Unit	test	:

IPFIX
BFD
Classifier
DHCP
FIB
GRE
IPv4
IPv4	IRB
IPv4	multi-VRF

IPv6
IP	Multicast
L2	FIB
L2	Bridge	Domain
MPLS
SNAT
SPAN
VXLAN

Run	on	real	hardware	in	fd.io	Performance	Lab

Merge-by-merge	packaging	feeds
Downstream	consumer	CI	pipelines

Universal Fast Dataplane: Infrastructure

35

Server

Kernel/Hypervisor

FD.io

Bare	Metal

Server

Kernel/Hypervisor

FD.io

VM VM VM

Cloud/NFVi

Server

Kernel

FD.io

Con Con Con

Container	Infra

Universal Fast Dataplane: xNFs

36

Server

Kernel/Hypervisor

VM

FD.io based	vNFs

VM

FD.io FD.io

FD.io

Server

Kernel/Hypervisor

Con

FD.io based	cNFs

Con

FD.io FD.io

FD.io

Universal Fast Dataplane: Embedded

37

Device

Kernel/Hypervisor

Embedded	Device

FD.io

Hw Accel

Server

Kernel/Hypervisor

SmartNic

SmartNic

FD.io

Hw Accel

Universal Fast Dataplane: CPE Example

38

Device

Kernel/Hypervisor

Physical	CPE

FD.io

Hw Accel

Server

Kernel/Hypervisor

VM

vCPE in	a	VM

VM

FD.io FD.io

FD.io

Server

Kernel/Hypervisor

Con

vCPE in	a	Container

Con

FD.io FD.io

FD.io

A Fast Data Network Platform For Native Cloud

Network Services

39

Superior Performance

Most Efficient on the Planet

Flexible and Extensible

Open Source

Cloud Native

Breaking the Barrier of Software Defined Network Services
1 Terabit Services on a Single Intel® Xeon® Server !!!

EFFICIENCY

PERFORMANCE

SOFTWARE DEFINED NETWORKING

CLOUD NETWORK SERVICES

LINUX FOUNDATION

Opportunities to Contribute

We invite you to Participate in fd.io

• Get the Code, Build the Code, Run the

Code

• Try the vpp user demo

• Install vpp from binary packages

(yum/apt)

• Install Honeycomb from binary packages

• Read/Watch the Tutorials

• Join the Mailing Lists

• Join the IRC Channels

• Explore the wiki

• Join fd.io as a member

fd.io	Foundation 40

• Firewall

• IDS

• DPI

• Flow	and	user	telemetry

• Hardware	Accelerators

• Container	Integration

• Integration	with	OpenCache

• Control	plane	– support	your	favorite	SDN	
Protocol	Agent

• Test	tools

• Cloud	Foundry	Integration

• Packaging

• Testing
https://wiki.fd.io/view/Main_Page
https://wiki.fd.io/view/VPP
https://wiki.fd.io/view/CSIT

FD.io	project	wiki	pages:FD.io	git	repos:
https://git.fd.io/
https://git.fd.io/vpp/
https://git.fd.io/csit/

Q&A

Thank	You	!

