

UKNOF4 Presentation

Data Centre Power and Cooling

May 2006

Data Centre Power and Cooling

- Historical Trends Power/Cooling Growth
- Data Centre Design Problems
- Colocation Companies' Problems
- The Future

ITconstruct Credentials

- Over 25 years telecoms construction and data centre experience
- Data Centre Specialists
- In past 5 years the directors have:
 - Built and operated 17 commercial data centres totalling over 600,000 sq ft
 - Built over 100 data suites
 - Performed feasibility high level design and cost plans of 25 data centres
- Complete understanding of entire project lifecycle from inception to full operation of a commercial scale data centre

ITconstruct's USP: Directors have <u>built</u> and <u>operated</u> 17 data centres as the client ourselves

Industry Changes

Increasing power and cooling requirements for IT equipment

- Power increases of this scale are hard to predict
- Blade Servers
 Everywhere
- SUN F15 25kw heat
- HDS 9980 SAN 63amp 3 phase supply
- Far more stringent manufacturer environmental requirements or warranties voided
 CHARTERED BUILDING CONSULTANCY

Power Density Benchmarking

	Power Density - watts	Facility Size -	Facility Designed -
Organisation	per sq metre	sq metre	Date
LIFFE	1,200	1,000	
BT Cardiff	2,000	3,000	2001
DT Logata Fuchances	500		
BT Locate - Exchanges	500		
Barclays	2 000		
Darolayo	2,000		
Chase Manhattan	750		
Bank of America Canary			
Wharf	750	1,000	2001
Citi Croup Lowishom	1 000	6 600	
Citi Group Lewisham	1,000	6,600	
Citi Group Canary Wharf	1.000	4.000	
	,	,	
Centrica	1,000	6,500	2000
HP	2500		2004
	0000		0004
IDIVI	3000		2004

UK Bank Actual Power Growth

DATA CENTRE COMPUTER LOAD HISTORY AND FORECAST @ 20% INCREASE/ANNUM FROM APRIL 04

Actual ITconstruct Projects

- 2003 BT Tunnels
 - 1500 w/m²
- 2004 ClarityBlue
 - -1000 w/m^2

- 2004 UAE Airline Co
 - 1500 w/m^2
- 2005 UK Bank
 - $-2000-3000 \text{ w/m}^2$

Actual ITconstruct Projects

- 2005 Texaco
 1000 w/m²
- 2005 UK Bank
 - 1500 w/m^2

- 2006 Colo provider
 - 1250 w/m²
- 2006 Tiscali (Colo)
 - 1000 w/m² Upgradeable to 1500 w/m²

Future Power?

- The new "average" power density we believe is therefore in the region of:
- 1000-1500 w/m² for Colo Sites

 1500-2500 w/m² for high spec facilities such as banking sites

Conundrum

- IT equipment lifecycle is 2-3 years or even less
- Data centre lifecycle is typically 15-20 years or more
- Power and Cooling requirements continuing to increase exponentially
- Future IT developments unknown

Where Will the Power Growth End

- 2000 Watts/Square Metre?
- 3000 Watts/Square Metre?
- 5000 Watts/Square Metre?

However...

- Its not the power it's the cooling.....
- Physical constraints for conventional cooling systems (raised floor plenum) dictate around 3000 w/m². Above this specialist air treatment methods are required such as hoods, canopies and above ceiling plenums
- Higher cooling densities than this would mean the flow of air across the room would begin to blow people over as they walked around

Colo Design Strategy

- Most Colo facilities designed around years 1999 2001 at around 450 750 watts per square metre
- Designs based on historical thinking and power growth trends with some thought for increased demands of power
- Designed to last for 15-20 years
- M&E designers "a pretty staid bunch"
- Colo strategy was... "A race to build"

Colo's Problem

- Most facilities in service for just 4-5 Years
- Most facilities now experiencing problems with levels of power and cooling requirement
- Most colo companies are "cash strapped"
- Most facility designs do not accommodate ability to upgrade without loss of service
- Most facility designs now obsolete
-(Although the Colo's won't tell you that)

How to Spot the Problems

- Data Centre Managers unwilling to allow additional IT equipment into facility
- Facility feels generally too warm and has "hot spots"
- IT equipment often fails for no apparent reason, normally assumed to be faulty IT kit, probably running too hot though
- Outages occurring more frequently

Risks to Colo's and their Customers

• Continued IT growth with M&E expansion or upgrade constrained will potentially result in a collapse of the data centre infrastructure:

Potential MELTDOWN Scenario

• Data centres will be physically unable to support new IT equipment that is required for continuing customer growth and new business activities.

Result

- Colo's increase prices to restrict further demands on power and cooling
- Colo customers business activities are therefore restricted
- Expect further price increases as power/cooling demands get even more critical and energy prices continue to increase

What can be done

- Upgrade existing facilities
 - Major work required (especially for cooling systems)
 - Costly
 - No budget
 - No power available in location
 - Potential outages (planned and un-planned)
 - High Risk
- Build new more energy efficient facilities
 - Costly (but easier than upgrading)
 - Timescale issues
 - Migration issues
 - Low Risk

Avoiding the Same Mistakes

- The IT function needs to have a better appreciation of the M&E complexities of designing and building a Data Centre
- The M&E designers and contractors must appreciate the "essentials of modern life" for the IT company
- Facilities need to be designed with flexibility to adapt to ever changing IT requirements
- Incorporate energy efficient technology
- Utilise wasted heat
- IT equipment manufacturers to give more consider to the environment within which their equipment will be installed

Fundamentals

- IT must understand M&E.....
- M&E must understand IT.....
- Data Centre Design MUST be flexible and able to "Evolve" to accommodate changes/upgrades without outages

Conclusion

• With the benefit of hindsight of course....

Contacts

Name	Company	Phone	Email
Dave Coulthurst	ITconstruct	01625 520 152 07786 513 173	dave@itconstruct.com
Rupert Wolgram	ITconstruct	01625 520 152 07770 635 808	rupert@itconstruct.com

