
Kolmo
Generic read/writable configuration infrastructure for

automation

bert hubert
UKNOF38 - Sheffield

https://kolmo.org/ - http://tinyurl.com/kolmopreso

@PowerDNS_Bert

https://kolmo.org/
http://tinyurl.com/kolmopreso

128Kbit/s, 500ms latency.

Configuration

● Make runtime/boot time changes to:
○ iptables
○ ifconfig txqueuelen
○ /proc/sys/
○ bridge (brctl)
○ Actual QoS (tc, htb, cbq)

● ALL OF THESE could not be serialized
○ Pretty output is available - for humans
○ Most of them to this day can’t be saved/serialized
○ Exception: iptables-save / iptables-restore

You can’t download
the configuration?!?!

You can’t even commit
the configuration?!?!

“Never underestimate the bandwidth of an
armoured helicopter in Bosnia” - no one ever

Central problem: You can set
server/system state. But not
retrieve it. Let alone find out
what you changed!

2000 solution: generation

/etc/network/i
nterfaces

ifconfig

route

dhcp-client

DO NOT
TOUCH!!

DO NOT
TOUCH!!

DO NOT
TOUCH!!

2014 solution: generation

/etc/network/
interfaces

ifconfig

route

dhcp-client

DO NOT
TOUCH!!

DO NOT
TOUCH!!

DO NOT
TOUCH!!

Play
book

DO NOT
TOUCH!!

Automation workflow

1. Create playbook
2. Run playbook on servers
3. Modify playbook bit in response to new

needs
4. Deploy to servers
5. Happiness

Lies!

Actual automation workflow

1. Create playbook, run playbook on server
2. Server does nothing like you want it to
3. Inspect server
4. Find Ansible ‘lineinfile’ triggers on a comment block
5. Change playbook, rerun
6. Find further problems, change playbook, rerun
7. Webserver does not do what you want, work on server

to figure out how to get it to do what you want
8. Attempt to put those changes in playbook, finally it

works
9. Rerun playbook against fresh server: nothing works

Automation dream workflow

● Deploy fresh server
● Configure everything, on that server,

until it is exactly how you like it
● Download server state delta
● Insert delta state in playbook
● Happiness

Why it can’t be done “after the fact”

● A typical process if configured using several configuration files
● Some of them under distribution/operating system control
● Some of them explicitly meant for you to change them

○ Include.d directories, sites-enabled, sites-available
● Some of them are TEH HUGE and actually contain large parts

of the software logic (Exim)
● There is no easy way to “extract your changes” from this set of

configuration files
● There are only very painful ways to “insert your changes” into

existing configuration files
○ (sometimes there is an ansible module that helps)

Introducing:
Kolmo

Inspect, retrieve, modify &
deploy configuration safely

● Programmatic access to
configuration
○ Read/Write

● Typesafe configuration schema
with internal constraints

● Self-documenting
● Client-side, offline, validity

checking
● Meant to ease

“automation”
● Library & tools to

support all kinds of
systems/services

Configuration file
parser

Commandline
parser

Configuration
writer & differ

Runtime & Static
API to

configuration

Self-documenting
configuration

schema

Kolmo

The Schema: Welcome to the default free zone

● Defines all configuration settings
○ Type (YES IT IS TYPESAFE)

■ String, IP address, netmask, MAC address..
○ Defaults (ALL defaults)
○ Mandatory / optional
○ DESCRIPTION
○ UNITS
○ CONSTRAINTS

● If nothing else, the configuration schema is GREAT
documentation of your configuration file and all defaults!
○ “The problem with documentation is that the

compiler does not read it”

“Ws”: the Kolmo “Hello, World”
application

(that powers https://kolmo.org/)

https://kolmo.org/

 $ alias wsctl='./kolctl --config=ws.json
 --schema=ws-schema.lua'

 $ wsctl ls
 carbon-server Send performance metrics to this IP

 client-timeout 5000 Timeout before client gets disconnected

 hide-server-type true If we should hide server type

 hide-server-version false If we should hide server version number

 kolmo-server 127.0.0.1:1234 If we should launch a kolmo server

 listeners {struct} Optional configurations per IP address

 loggers {struct} Loggers that log events and hits

 max-connections 200 Maximum number of connections

 server-name kolmo.org Name this server reports as by default

 sites {struct} Sites we serve

 verbose false Perform verbose logging

$ wsctl minimal-config
{}

$ wsctl full-config
{
 "carbon-server": "", "client-timeout": 5000,
 "hide-server-type": false,
 "hide-server-version": false,
 "kolmo-server": "127.0.0.1:1234",
 "listeners": {},
 "loggers": {
 "messages": {
 "log-errors": true, "log-file": "",
 "log-hits": false, "log-warning": true,
 "syslog": true,"syslog-facility": "daemon"
 }
 },
 "max-connections": 200, "server-name": "",
 "sites": {}, "verbose": true
}

 $ wsctl set verbose=true
 $ wsctl minimal-config
 {}

 $ wsctl set verbose=false
 $ wsctl minimal-config
 {
 "verbose": false
 }

 $ wsctl set client-timeout=4000
 $ wsctl minimal-config
 {
 "client-timeout": 4000,
 "verbose": false
 }

$ wsctl set server-name='kolmo.org'

$ ls -l ws.json ws.json.20170911-2*
l 23 sep 11 22:10 ws.json -> ws.json.20170911-221017
-rw-rw-r-- 52 sep 11 21:55 ws.json.20170911-215551
-rw-rw-r-- 84 sep 11 22:10 ws.json.20170911-221017

$ cat ws.json
{
 "client-timeout": 4000,
 "server-name": "kolmo.org",
 "verbose": false
}
$ diff -uBb ws.json.20170911-215551 ws.json
--- ws.json.20170911-215551
+++ ws.json 2017-09-11 22:10:17.568626625 +0200
@@ -1,4 +1,5 @@
 {
 "client-timeout": 4000,
+ "server-name": "kolmo.org",
 "verbose": false
 }

$ wsctl add sites kolmo '{"name": "kolmo.org",
 "path":"/var/www/kolmo.org"}'

$ wsctl add sites/kolmo/listen "[::]:8000"

$ wsctl ls sites/kolmo
enabled true If this site is enabled
listen {struct} IP endpoints we listen on
name kolmo.org Hostname of this website
path /var/www/kolmo.org Path on fs where content is
redirect-to-https false redirected to https

$ wsctl minimal-config
{
 "client-timeout": 4000, "server-name": "kolmo.org",
 "sites": {
 "kolmo": {
 "listen": {"0": "[::]:8000"
 },
 "name": "kolmo.org", "path": "/var/www/kolmo.org"
 }
 },
 "verbose": false
}

Runtime & Constraints

Configuration
Schema File:

Defaults, constraints,
prototypes

Stored
Configuration File

(Lua, JSON)

Libkolmo

Your Process (WS) kolctl
Kolmo
Thread
(web)

Kolmo
Thread
(web)

$./ws &
Verbose is false
[kolmo] We run a website called kolmo.org
The site enable status: 1
We serve from path: /var/www/kolmo.org
We serve on addresses: [::]:8000

Need to listen on 1 addresses

$ alias wsctl='./kolctl -r http://127.0.0.1:1234'

$ wsctl ls
carbon-server Send performance metrics to this IP
client-timeout 4000 Timeout before client gets
hide-server-type false If we should hide server type
hide-server-version false If we should hide server version
kolmo-server 127.0.0.1:1234 If we should launch a kolmo server
..

$ wsctl delta-config
{}
$ wsctl set verbose=true

$ wsctl delta-config
{
 "verbose": true
}

$ wsctl set max-connections=300
{"reason":"Attempting to change var at runtime
 that does not support runtime changes",
 "Result":"failure"}

$ wsctl set verbose=MORE
{"reason":"Attempt to set bool to something not
 true or false",
 "result":"failure"}

$ wsctl set client-timeout=0
{"reason":"Timeout must be at least one ms",
 "result":"failure"}

$ wsctl set carbon-server=1.2.3.4.5:1234
{"reason":"Can’t convert address '1.2.3.4.5:1234' ",
 "Result":"failure"}

main:registerVariable("client-timeout", "integer", {
 (...)
 check=
 'if(x < 1) then error("Timeout must be
 at least one millisecond") end'
})

main:registerVariable("carbon-server", "ipendpoint",
 { (...)
 })

$ kolctl --schema=ws-schema.lua markdown

Some usecases

● Webserver is misbehaving “all of a sudden”
○ Run kolctl delta-config on running process: gives all runtime changes versus

startup configuration
○ Discover someone helpfully changed the certificate file to the wrong path, at

runtime

● Webserver is misbehaving “all of a sudden”
○ “delta-config” shows nothing interesting
○ “ls -l ws.json*” however shows a new configuration was created 5 minutes

ago
○ “diff -uBb ws.json.20170908-1245 ws.json” shows client-timeout was set to 1

millisecond
■ By operator who had ignored the helpful “units” output in “kolctl ls”

Relation to
Automation

For “Kolmo” enabled services

1. Instead of hacks to
manipulate configuration
file, execute ‘kolctl’
commands on server

2. Alternatively, deploy the
‘minimal-config’ you got
from your Kolmo-enabled
service when it was “Just
Right” (but mind the
‘migration’ slide)

Summarising

● Kolmo is an API for changing/consulting a system’s
state/configuration
○ Typesafe with constraints

● HTTP-based access to stored (committed) configuration
○ And to runtime changeable variables

● Keeps track of ‘delta’ between runtime & committed
● Keeps log of all changes
● Built-in documentation generation from schema
● Free! (MIT licensed)

Status

● Working prototype, running code!
○ https://kolmo.org/ & https://github.com/ahupowerdns/kolmo

● Tremendous fun to work with, concept works for me as a
programmer
○ (I’m not ever writing or even USING a configuration file parser

ever again)

● Quality of code: this segmentation fault is your hint

● Only available for C++ 2014

● GOAL: Get everyone hot for this concept

https://kolmo.org/
https://github.com/ahupowerdns/kolmo

Now what?

● Please join in!

● If you are a developer: share your thoughts on the
API

● As an automation person: how does this fit in your
life? Has it been done?

● As software users: get annoyed that all your favourite
servers do not come with a configuration schema file!
○ You’ll miss ‘wctl ls’ from today onwards!

Kolmo
Generic read/writable configuration infrastructure for

automation

bert hubert
UKNOF38 - Sheffield

https://kolmo.org/ - http://tinyurl.com/kolmopreso

@PowerDNS_Bert

https://kolmo.org/
http://tinyurl.com/kolmopreso

