
BUILDING A USEFUL
NETWORK PROBE
WHILE YOU WAIT

David Farrar / Exa Networks
UKNOF 40 - Manchester

The problem

● We were filtering customers on our new SurfProtect platform
○ HTTP and HTTPS proxy (we provide certificates to schools)

in Golang - replacing ExaProxy, presented here a few years ago
○ Not yet battle tested at the time (still in early release)

● Things were going well .. until ...
a handful of schools reported intermittent timeouts loading web pages

● Most customers were unaffected
○ Our monitoring showed no sign of the issue
○ Internal analytics showed no errors
○ No sign of latencies / packet loss (after some false alerts)

The REAL problem

● We couldn’t replicate the issue ourselves

● The schools did not really want to cooperate
○ All of them were convinced our solution did not scale for them
○ And nobody wanted to risk disruption until we’d fixed the problem

● We knew that the problem was triggered with heavy traffic
○ But only with proxies explicitly configured in browsers
○ And only in a subset of locations
○ Which didn’t include our testing network

● The assumption was that we’d hit some connection tracking limit on a firewall
○ But we had no way to collect the data to prove it

Quick and Dirty monitoring

● We’re used to building software that does exactly what we want
○ But that takes time
○ And needs testing (like we were doing now)

● Homemade monitoring solution
○ Glued together with BASH
○ CURL based monitoring solution
○ Run periodically with CRON
○ ICMP / TCP / HTTP / HTTPS and windows SSO out of the box

● We needed to track time-series data
○ Prometheus already used in internal monitoring
○ But I already knew we could write to InfluxDB via an HTTP POST
○ So we used InfluxDB

root@CustomerID:/home/pi# cat /usr/local/bin/check_surfprotect_adauth
#!/bin/sh

now=`python -c "import time; print(time.time())"`
probe=CustomerID

ad_auth_data=`curl --proxy ad.quantum.exa-networks.co.uk:3128 --user :
--proxy-negotiate
"http://monitor.surfprotect.co.uk/images/exa_logo.png?probe=$probe&ts=$now"
-o/dev/null -s -w"%{http_code} %{time_total}"`
ad_auth_status=$?
ad_auth_code=`echo $ad_auth_data | cut -d ' ' -f 1`
ad_auth_time=`echo $ad_auth_data | cut -d ' ' -f 2`

echo "latency,service=ad-auth,code=$ad_auth_code,status=$ad_auth_status
value=$ad_auth_time" | curl -i -XPOST 'http://localhost:8086/write?db=latency'
-o/dev/null -s --data-binary @-

Windows SSO

AD and Kerberos … close enough when you need quick testing.
Generate and Export a user

pi@pi100695:~ $ ps axf | grep k5 | (grep -v grep)
20361 ? Ss 0:04 /usr/bin/k5start -K 60 -U -f /srv/surfprotect/auth.keytab

root@sp-kerberos:~# kadmin.local
kadmin.local: addprinc -randkey quantumprobe
kadmin.local: ktadd -norandkey -t /tmp/auth.keytab quantumprobe

To auto-login at boot

Used ansible to deploy our monitoring

● We always use ansible
○ But now we had no direct access to the probes
○ And no idea how to get ansible to use teleport
○ .ssh/config to the rescue
○ Ansible can just directly connect to the probes

Host CustomerID.probe.exa.net.uk
HostName %h
Port 3022
User rpi
ProxyCommand \
 ssh -p 3023 power.user@bastion.exa.net.uk \
 -s proxy:%h:%p@CustomerID

No Problems found

● Still could not replicate the problem
○ Time for “PLAN B”

● We still had access to the probes
○ Decided to use AB (apache benchmark)
○ Finally saw the reported issue !

● PCAP to the rescue (on both client and server side)
○ Some connections froze (during TCP handshake)
○ Expected to see missing SYN (connection tracking limit reached)
○ But saw SYN with wrong SEQ number part of an established connection

Can you guess what is happening here ?

High performance TCP tuning

The answer: TCP TIME_WAIT …

● Time to look again at the TCP state machine …
● Great blog from Vincent Bernat

https://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux

Some vendors should read it …

● RFC default: 120 seconds
● Vendor default: 1 second
● Helps when passing MANY connections to unrelated IPs
● Value not modified when all the connections are to a single IP (the proxy)
● Causing our proxy to correlate unrelated connections

Change the vendor default to 60 … Everyone’s now happy (even if mismatched)

Other fun days included

● Google reCAPTCHA madness (traffic levels ???)
● Google directing IPv4 end-users to an IPv6 only host (ipv6.google.com)

● Chrome certificate pinning google.com … for dictation

● Do you see a pattern here ?
● See me at a break if you know someone at Google who has sympathy

for NON-governmental filtering :-)

● But we should not ignore Facebook
or anyone with an IOS app and using certificate pinning

● And everyone who thinks that 443 is the wild west for your homebrew
protocol

Questions

● Happy to name and shame
● If you turn the video off :)

Otherwise it’s all Google’s fault for making the world secure !

