The Single Source of
Truth for Network
Automation

(
f\ Andy Davidson <andy@asteroidhg.com>
March 2018

$ 51
T /A .
1 “Astero /O/ CEE Peering Days 2018, DKNOG 8, UKNOF 40

mailto:andy@asteroidhq.com

Automation Journey

w

Reporting

Most network engineers begin their automation journey by producing
some simple reporting software. It is low-risk, has a positive useful
impact, and a good introduction to network scripting and the many
libraries that support network automation.

Reporting

Most network engineers
some simple reporting
Impact, and a good int
libraries that support netwd

Automation Journey

J AN

Reporting Tooling

Eventually, tasks which are repetitive, and simple to automate start to
look like great candidates to automate. Engineers discover that the
great libraries that integrate with software tools can be used to write
as well as read configuration, and simple standalone tools are created.

Automation Journey

N~ = - . ~! " '\ .
Reporting L oIn T
- - " C -
~! ,' o -

look i
great
as we

ibraries that integrate with software tools can be used to w

| as read configuration, and simple standalone tools are created.

Automation Journey

.

Reporting Tooling Application

More complex tools are eventually produced. Engineers begin to
“configure the network and not the device”, so state becomes a
problem (I mean state becomes properly managed). This takes the
look and feel of a proper application.

Automation Journey

~ N\

Reporting Tooling

IS
Sop
e

&,
Q/a
Q[/o
n

!}/Iore lcomplex tools are eventually p; Sﬁf‘&\;
configure the network and not the “*i%‘s\\“
problem (I mean state becomes pj .

look and feel of a proper applicat

Automation Journey

Reporting Tooling Application Business

The ultimate place to reach is a fully automated and integrated

business with a set of processes enforced and delivered by software.
“Configure the product, not the network”.

Generally solved by businesses with scale challenges (mass access,
hosting) but now a commonplace medium sized ISP/IXP requirement.

8

This presentation..

e QOffer a technical perspective/thoughts on architecture on Greenfield deployment
at the ‘automated business’ end of the spectrum

e What motivated this decision?
* Replication - “as a service” product
e Efficiency, leanness
e Service assurance (rapid provisioning, ongoing high availability)
* |ntegration with third party peering networks, Euro-IX, PeeringDB
e Experience in this field, and frustration with traditional model

e Chance to align business and technical process from the start - in our “DNA”

This presentation .. (2)

e Data model

e Why and how to build a data model to support integrated
automated business

e Software architecture for network centric businesses
* Abstraction
* APIs & APl integration with customers

e Software testing

e Useful third party tools

10

What | mean, “data model”?

it Fag opo ol

H El

* A description of the things your business needs to ‘know’
In order to operate

e Start with the steady state of the business

11

What | mean, “data model”?

:

\
\\K/gégg

e Then model the interactions
between those “things”

Why to care from an
engineering point of view?

B __ e

o« o B O,
N e

Where does/shall data live?

& O

Where does/shall data live?

t

'

& O

0,
E-g ¥ SUGAR

Fundamentally it is fine
for data to “live” In
different tools and

g ﬁ databases E_ﬂ & "

® W\
* €D influxdb My | X Confluence

15

Where does/shall data live?

Search Engine, Inc.

* Confluence @

Search Engine

16

Where does/shall data live?

Search Engine, Inc.

* Confluence @

\.We just deal with Fred :
QL. Search Engine

17

Where does/shall data live?

h
Fundamentally it is

not fine for more than ¢ SUGAR
one data place to be

authoritative for any

single type of record

The other databases :
g ﬁ must refer to the key Eﬂ 0, .
N (id) of a single g p
My authoritative source = o<

18

Where does/shall data live?

«| |
WL [|
. [
[[
X Hll%5
. . #
a __ .',,*,._
JNaamentaly.It
N = g S o v ’
| = [

not fine for more than
one data placeto be " '
authoritative for any—"
single type ofrecord

n __-he other databases &
g | E g must refer to the key ﬁ O, i
TN (id) of a single g
Wy authoritative source = confluenee

We will talk about how to configure and enforce that shortly.

Rules of Engagement

Store any item of data ONCE
e Easy to ensure that it is correct
* “Third normal form”

Give every record a unique ID which has nothing to do with the
record

* (ASN is not to be used as ID!)
Decide where it will be authoritative

Requires buy in and planning from across the business.

20

Separate your customer/
Infrastructure data

port_id service_id
customer_id port_id
bridge_id service_item1
port_name product_id

Ensure infrastructure centric and customer-centric data is not in the same table
This will make your data substantially easier to maintain in terms of portability

21

Database Fashions

e Document store -vs- RDBMS

e Developers like document stores because they are very
extensible and less strict

e “Storage” cost reduced, so now we can be lazy

e Strict is a benefit / feature

22

Common Data Stores In
Engineering

e SQL - Truths about users, ports, services, ‘state’, e.g.
MySQL

e Time Series - e.g. Port utilisation, light level, error count,
e.g. InfluxDB

e Third Party - Someone else’s sorted data, e.g. CRM, e.g.
EurolX/PeeringDB

23

General Architecture

Client Utilities (scripts, portals, even customers)

JAN

Worker influxdb MySQL., ¢ SUGAR

Device | Device j Device A single API layer makes it simpler to develop
A A W and monitor your platform, and easier to make
changes to back end services as time goes by

24

General Architecture

Client Utilities (scripts, portals, even customers)

JAN

Worker influxdb MySQL., ¢ SUGAR

Device Device Device
A A W

It also makes it easier to expose your tools and
data to customers. This is a good thing!

25

General Architecture

Client Utilities (scripts, portals, even customers)

JAN

Worker influxdb MySQL., ¢ SUGAR

Device Device Device
A A W

API can export data, no matter about back end
storage format in a single format (pick JSON)

20

S

1

v - & P~

GEGR

N By H
D%~

v
N -

2 Ny =
'

-

asn': .

‘collector bgpd lost crergec™: "Z9lF @1 €7 12:39:32",
‘eollec—ar_bgpd _nheprvec_time™: "ZDR-Q1-03 27:79:27",
‘collector bgpd rouzes”: 11,

‘callec-or_bgpd_s-o-p": "Fstahlierez",
‘collec.or_bgpb_los. _crorged™. *Z878-21-0/ 12:39:10",
‘collector bgpb vbservee T-me™: “Zo0lE €163 21:.9:27",
‘collecor_bgph_rou-es": 5,

‘collector bgpb stote”: “"Estoblishes”,

‘exchange_<d': 1,

‘exchange_name '@ "dc_ercld Avslercom Lalaenal zxcnangz",
‘exchange shortnone”: "cms™,
‘moc_address'

‘newwork id" 4,
argon sa=ton_{ 4" Internal SQL
‘peering_dnsnane’ .

‘peering ipbaddr”: "ERi1:7F9-B0:: "
‘peering_ipodde’: "185.1. .,

‘port id": 7,

‘rouse_server_ennfic": 1,

‘rouieserver_bopd_los. _chonged® . "¢@lf €1 €3 11.9a2:08",
‘rovteserver bgpd observec ti-e”: "Z@l8-C1-83 20:45:38",
‘routeserver_bgpd _rovces_“Ulterec": 3,

‘rovteserver bgpd rovtes rportec”: 7,
‘rouseserver_bapd_e-c-e": "Fatobliesss"
‘roueserver_bopb_los. _chonged® . "ddlf €1 €3 20:34:95",
‘rouTeserver_bgphi_nbservec_t--e®: "Z2°H-21-83 ?Q:45:58",
‘rouieserver_bopb_rovies_ Tl terec": @,

‘rovteserver bgpé rovtes rportes”: 5,
‘rowseserver_baphi_e-a-e": "Fatoblie=ss"

‘service id':

wler_R@21q_teq’: 131",

“wiar_id": 1,

‘wlan name' : "AMS PEERINC™

Worker, BIRD

GET

Fretty

3

41
42
43

45
46
A7
48
49
50
51
52
53
54
55
56

S8
59

61
62
63

6s
66

67 -

68

70

/

72 -

ra

)

httos.fispuinik.asteroidk q.com/oory2

Raw Freview JSON 5

e S) . e e e e

“port_enahlec’: 1,

-

"perl firsk Link enable Cime": "6Lh-February-2€15 27:29.53",

peri_.d": 2,

"pert_dentifier': "Ctherretls2",
“pert_crigingl _line-tem_ic": 1,
"pert_erigincl_guote_idT: 1,
"poert repeatbill id": 1,
pert_repeazbill_mrc': 9,
"pert_speed_rame’: "1002Q",
“port_supervisor_lock": @,

"perl swilch admin enable": 1,

"pert_switch_last_flepped_time : "1ith-Janvary-29l18 ©9:01:49°,

"pert_switch_link_encble": _,

“pert_switch_nhserved_time": 'Zad Marck 2018 14:31:68",

"pert typeT: "physicel”,
"stets": {
"becctime”: 1u",
"bec<time _days": "7%,

“hps_in": [
L

"d01d-9L-23 14:30:90L7,
1198.9533333333333,
1579396264

'2013-92-23712:90:00Z",
1336.20323333333233,
157 9398DEG

'2018 92 23712:30:00Z%,
1731 . BR6RARRERRAGER
15293998¢€a

012 07 E3TIA NN Q0T

Worker, Arista

InfluxDB

Models <> Templates

e Once you have confidence in your data model you can
harness the power of templated configuration

e Once your data model extends across the business you
can do that with greater accuracy and devolved control

e e.g. at Asteroid, our sales people can deliver exchange
ports directly from the quotation

e SO can customers

e Simultaneous delivery of monitoring from the quotation

28

Automation fire triangle

wplates

. Tem

Templates - Jinja

{% for network in exchange_data.json.member_list %}
AS{{ network.asnum }} - {{ network.name }}

protocol bgp pb_as{{ network.asnum }} {
description "Collector for AS{{ network.asnum }} - {{ network.name }} “;
local as collectorasn;
source address collectoraddress;

neighbor {{ network["connection_list"][@] ["vlan_list"][@]["ipv4"]["address"] }} as {{ network.asnum }};
import all;
export none;

}

{% endfor %}

e Generate any kind of configuration

* Takes variables from your JSON API

* Facilitates programatic methods in configuration strophe
e | oops
* Conditionals

30

Automation - Ansible

: get route-server settings for this ixp
: url="https://sputnik.asteroidhq.com/export/euroix/{{ exchange_id }}/participants.json" body=yes
: exchange_data

- softconfig

: install bird IPv4 config

src=templates/collectord4.conf.j2
dest=/etc/bird/bird.conf
owner=root
group=root
mode=0640
vars:
exchange_data: {{ exchange_data }},
: bird4_changed

- softconfig

: restart bird (IPv4)

31

Conditional Logic without
script

: Collect Prefix information
: url="http://46.51.199.18/prefix/{{ item["connection_list"] (@] ["vlan_list"][@] ["ipv4"]["as_macro"] }}' body=yes
: prefix
: "{{ exchange_data['json'] ['member_list'] }}"
: item|['connection_list'][@])['vlan_list'][@]['ipv4']['routeserver'] == true

- softconfig

32

Advantages

e API layer lightweight

e Retrieve and update database records

e Write in a familiar type-safe language (I chose Python)
e Automation layer lightweight

e Essentially Ansible configuration files

e Configuration “easier” than coding?

33

Business Logic

Client Utilities (scripts, portals, even customers)

JAN

XD influxdb MySQL. esu

n

Dexice Dexice De\‘/’\;ce Ensure your API choices allow you to store, retrieve
and process business logic as well as your technical
products. Example: Asteroid Campaign logic.

34

Worker Architecture

Client Utilities (scripts, portals, even customers)

Worker

Must consider:
* |nter Process Communication
* Job and network state

* Device independent

* \Vendor failure behaviour

* Device swap-outs

Device Device Device
A A W

35

Inter-Process
commuhnication

* Message Queue based?

e e.g. RabbitMQ
e = Quite good support in major scripting languages
e = Fault tolerant, order matters, guaranteed delivery, HA
e -~ Extra software to support & Centralised
e Web Services

e = Same technology stack as central API

_= Inherently extensible

~& Decentralised

" Extra software to write and more state to manage
36

Device Independence

| chose to write a different worker per back end
technology

" A bit of copy/paste code, which is an anti-pattern
= No stress trying to treat different vendors generically
= NAPALM allows me to continue with Ansible

_= Can swap out a switch/server architecture for sure

37

Device Swap-outs

e Using Ansible/NAPALM for switch configuration allows a
process for rolling full configuration in event of device
failure

e No need for specific software feature, an operational
process Is ok

38

Software Testing

tatou: test example andy$ 1s
___pycache_ test example.py

tatou: test _example andy$ cat test example.py
#!'/usr/bin/eny python
import unittest

class UnitTests(unittest.TestlCase):
def test can_add oneone(self):
sum = 1 + 1
self.assertTrue(sum == 2)
tatou: test _example andy$ pytest
test session starts
platform darwin Python 2.7.10, pytest-3
rootdir: /Users/andy/test example, inifile:
plugins: cov-2.4.0
collected 1 1tems

est _example. py

] I](J(\’(\’(‘.(I i l'] [—].[-]‘l (\’(‘t('()r](](\’ ———+——+—+++++++F+++—F+—F+—F+F+—F+—F+F+—FFFFF T —

tatou: test _example andy$

o Write the test first

e Red, Green, Refactor mantra

39

Integration vs Unit Testing

class UnitTests(LoginTests):
def test_regular_user_can_view_own_contact(self):
result_json - sputnik_get(self, "https://127.0.0.1:5001/contact/6")
self.assertTrue(result_json["contact_firstname"] ‘Regular’')

def test_regular_user_can_not_view_others_contact(self):
self.assertRaises(AuthException):
result_json - sputnik_get(self, "https://127.0.0.1:5001/contact/3")

def test_can_not_load_administrator_systems_list_if_not_auth(self):
self.assertRaises(AuthException):
result_json - sputnik_get(self, "https://127.0.0.1:5001/exchange/2/systems")

If you are like me, you will prefer Integration tests
Write lots, and remember to cover desired exceptions
Run on your development instance after every change
“Back to Zero” testing catches unexpected failures

40

The Joy of Errors

tatou:sputnik andy$ pytest

test session starts s=—m—m,,——=
platform darwin — Python 2.7.10, pytest-3.0.5, py-1.4.32, pluggy-90.4.0

rootdir: /Users/andy/src/sputnik, inifile:

plugins: cov-2.4.0

collected 188 items

tests/test_api_asteroid.py

tests/test_api_whitelabel.py

tests/test_regular.py

tests/Test_UNit.PY cccccccccsctccccccssscncccsssscaccssssscnccssans Fesssssssssssssssssssssssssssnnas

FAILURES
UnitTests.test_can_load_organisations_quotes

self = <test_unit.UnitTests testMethod=test_can_load_organisations_quotes>

def test_can_load_organisations_gquotes(self):
ql = QuoteList()
testquote = ql.list_quotes_organisation(2) (@]
self.assertTrue(testquote["quote_currency”] = "EUR")
> self.assertTrue(testquote["quote_lineitems"] [8] ["quote_lineitem_desc"] == "18Gbit Peering Port, Stellar Internet Exchange")
E IndexError: tuple index out of range

tests/test_unit.py:391: IndexError
1 failed, 181 passed in 5.82 seconds

41

Ubiquity of JSON for an ISP

e Especially in Peering!
e PeeringDB

e Euro-IXIXF-DB

e Asteroid JSON

Summary

e Single source of truth under the control of all departments
 Which is used to configure services and network
e Accessible to all departments

e Customer self service

 Provision from gquote

e “Information in one place and tool”

 Account Managers can do troubleshooting

Any Questions?

£l
’f\) f Andy Davidson <andy@asteroidhg.com>
b Asteroid www.asteroidhg.com

mailto:andy@asteroidhq.com

