
  

mythic beasts

I have pre-emptively replaced you 
with a very small shell script

Automating all the things.
Pete Stevens

Mythic Beasts Ltd
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Job Offer

● I am on the lookout for a Junior Network Bod 
to help with a data cleanse. Essentially make 
sure our Config Management DB matches 
what’s on the live network and correct any 
discrepancies.

● I would imagine it would be a 3 month 
contract. Anyone interested please get in 
touch. 
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Network Audit

● Management hat
– Employ someone with valuable skills 

(networking)
– To do something really boring (auditing)
– Disruptive (network changes or config 

management changes to fix)
– With archeaology (why is prod different to 

config management?)
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Network Audit

● Misses important points

– How to stop prod drifting from config mangement
– Without crippling the organisation waiting on a dev 

team to upgrade the config management system 
rules

– 3 months, that’s time for more drift to occur
– Really want to audit once per week

● Or once per day
● Or once per hour
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Automating Network Auditing

● Standard tools don’t work, e.g. diff
– 2a00:1098::1   vs 

2a00:1098::0:1
– confederation peers a b c   vs

confederation peers b c a  
● show running-config might not give you 

exactly the same format back that you put in
● Some things change all the time (prefix lists)
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Automating Network Audit

● We have a series of configuration files that describe (almost) our 
entire network configuration

● routers.yaml

– Knows about every network interface and IP address on every 
router, and the type of interfaces

● Customer / inter-site / Internet Exchange / Transit
● Magically works out all the BGP sessions needed

● customers.yaml

– Knows about every customer that takes BGP from us
● Work out what customer IP is in which router IP subnet

and you can magically generate all the bgp sessions
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Automating Network Audit

● static.yaml

– Contains static routes for customers we transit
– Use this to generate more of our network config

● peers

– Tab separated file (hystorical reasons)
– Needs to migrate to a database and get auto-

populated from peeringDB
– Auto build peering config and filters from file + RADB
– Update peer filters regularly and automatically
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Automating Network Audit

● We can now generate all our BGP config for 
any given router.

● Context aware diff:
– Canonicalise all IP addresses so text match 

works
– Re-order confederations and similar so 

match works
– Check prefix lists exist but not contents – 

prefix lists change too fast
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Automating Network Audit

● We can now audit a router config quickly

– Including building all of our customer prefix lists 
from RADB, we can audit a router in around 30s

– Process is now: 
● Audit router
● Fix config management or production config
● Re-audit
● Repeat until no errors.

– Once no errors, schedule daily audits and fix new 
errors as they arrive
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Benefits of an audited network

● We caught fat finger errors (especially IPv6)

● This one slipped through manual checks for years:

– Should be: 
● neighbor 2a00:1098:2::5d5d:8563 update-source 

2a00:1098:2::5d5d:8566
– Was actually: 

● neighbor 2a00:1098:2::5d5d:8563 update-source 
2a00:1098:2::5d5d:8565

– The typo’d address meant we didn’t have full v6 
redundancy in one site for several years, all v6 went 
through one router
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Benefits of automatically auditing

● We know what config we’re running
● If someone monkey patches we find out 

quickly
● Doesn’t prohibit an under-duress hotfix

– Doesn’t let you forget about it!
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Not Just Networks

● Billing User < � billing@mythic-beasts.com>
● Date: Thu, 04 Apr 2019 10:11:11 +0100
● Unbilled VDSs on vds-ams-a: maryland

● We audit our entire VM estate every day.

mailto:billing@mythic-beasts.com
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Not Just Networks

● 11:20:08 <richard> anyone know anything about 
vds:maryland which is on vds-ams-a?

● 11:28:44 <avf> richard, that's not the VDS of the 
person who wanted his account cancelled, is it?

● 11:29:20 <richard> a/c XXXXX
● 11:29:33 <richard> service cancelled, but 

evidently not properly
● 11:30:10 <avf> that'd be my fault, I assumed it 

would be cleaned up automatically
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Infrastructure as code
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Leprechaun
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Hipsters beware
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Our config file format is Perl

$tag = 'B00003n0s';

add_asset({

        tag => $tag, height => 3, owner => 'mb', y => $y,

        type => 'server', side => 'f', name => 'leprechaun',

    });

foreach my $port (1 .. 8) {

    add_port ({device => 'leprechaun', type => 'serial', port_index => 
"1.$port" });

    add_port ({device => 'leprechaun', type => 'serial', port_index => 
"2.$port" });

}
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We call functions in config

add_connexion($tag.':power', 'ms-cam-8-1:power:8');

add_connexion($tag.':net:0', 'sw-cam-8-2:net:11');

add_connexion($tag.':net:1', 'sw-cam-8-2:net:19');
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Auditing

● We can automatically check things from here
● Compile time checks:

– Do we think a port has more than one device 
connected?

– Is each end of a connection connected to 
something we know about

– Asset tags are self checksumming, spot typos
– Does everything that needs a connection have 

one (e.g. do we know where every power lead is)
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More auditing

● Dynamic checks

– Does every device have a DNS record?

– Is it powered on?

– Is the switch port up?

– Do we have any up switch ports where we don’t know what’s 
connected?

● Run a full audit of every site weekly

– Generates tickets for people to inspect and fix when next on 
site

– If someone unplugged everything and put it in a pile, we could 
put it back

●
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Audit will tell you where to plug it in
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Cross-system integration

● Automatically build MRTG configuration

– Power graphs for every power bar
– Summaries for every rack
– Graphs for every switch port
– Summaries for groups of ports (Ixes,Transit)
– Summaries for racks (power)
– Entire config built automatically by cron
– Add a router interface to a transit provider, 

automagically appears in your graphs
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Feeds the control panel

● From an asset tag we can discover 
automatically
– Which switch port
– Which power port
– Which serial port
– Network addresses
– Bandwidth usage
– Physical location lit up in red on the picture
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Billing is key

● Billing attaches things to customers

– No billing record, no automatic config, service doesn’t work.

– We learned this in 2007 when we ceased being a part time 
operation

– About 1/5th of our customers had never been invoiced.
● We’d set them up, added a note to invoice later and never 

done it
● Same was true for Bluelinux (acquisition in 2012)
● Bhost also had unbilled VMs they’d forgotten about
● Due diligence on acquisitions always now involves a 

physical audit 
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Control panel populates itself
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Control panel populates itself
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Auto-config

● Munin config – automatic from billing database
● DHCP/recovery config – automatic from database
● Monitoring – port scan all managed servers daily

– Create ping/ssh/smtp/imap/pop automagically
– Create ticket for content-aware http/https
– Ping/ssh created in recovery so uptime not 

accurate
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Internal plumbing

Paul: “everything should be REST.  REST APIs are 
nice to work with.  SSH forced commands 
always end up as a hideous mess of awk, sed 
and xargs.”

Toby: “everything should be SSH forced 
commands.  We use SSH for admin anyway. 
REST APIs mean another service to keep running 
and secure, separate auth config, etc. “
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SSH APIs

● We make extensive use of SSH APIs for 
internal plumbing:
– REST API style (hierarchical endpoints, 

JSON in, JSON out)
– SSH transport and authentication
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SSH API

$ ssh -i .ssh/id_rpi_manage pifs-mer-a /unused

{

    "content": {

        "unused": 3

    }

}

$ ssh -i .ssh/id_rpi_manage pifs-mer-a 
/rpi/rpi:pete/reboot

{"content":null}
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Access control

root@rpi-fileserver1:~# cat .ssh/authorized_keys 

ssh-rsa AAAAB3...WnL Mythic Beasts admin key 
mythic-rpihosting

command="/home/rpi/rpi/rpi-manage" ssh-rsa 
AAAAB3...3Qf ctrlpanel@billing

End point is communicated via $SSH_ORIGINAL_COMMAND 
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SSH APIs

● Client and server SSH API libraries:

– Take care of capturing stdout, stderr, exit codes, etc.
● Very quick to develop and deploy

● We use SSH for admin anyway, so all admin access is 
managed in one place 

● SSHFP + DNSSEC avoids the “accept host key” problem 
when provisioning new servers

– This is harder than it should be and not yet 
complete.
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Managed Updates

● We have thousands of managed customer servers 
which we need to security update

● Run a mixture of debian/ubuntu/centos stable 
versions

● Customers have root and can configure themselves 
– we can’t use puppet/chef/ansible as we’re not 
definitive for all configuration

● Cattle not pets is great in theory but we run a 
cattery
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… and a luxury cattery at that!
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Managed Updates

● If we see a critical update for apache we want 
to upgrade just that package now, by 
running:

apt-get install apache2.2

or
apt-get install apache 2.4

or
yum update httpd
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Managed Updates

● We used to install a standard management 
key on all customer servers, but that’s a 
security nightmare

● One or more keys per customer
● Private key can’t be accessed by staff, they 

can only request a session on a customer 
server

● No agent fowarding, and only the customer-
specific key when we log in – minimise risks
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Managed bulk update process
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Managed bulk update process
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Managed bulk update process
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Managed bulk update process
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Managed bulk update process
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Managed bulk update process
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Managed bulk update process
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Managed bulk update process

● A 0 day update completes in around an hour
● A monthly update for a data centre 

completes in about 90 minutes
● We limit updates to 40 at a time

– Potentially multiple virtual servers on the 
same physical host

– Avoid overloading the CPU or IO 
subsystem
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In practice
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Other systems

● Domains – automate nominet / OpenSRS

● DNS – automate bind

● DNSSEC – automate bind and OpenSRS and nominet

● Hosting accounts – automate apache/dovecot/exim

● Virtual machines – automate KVM on Debian

● Containers – automate LXC on Debian (no docker – we care 
about persistence!)

● Reporter – daily read firewall / disks / processes etc. 

– Things an experienced admin asks an undocumented 
machine, we log for every managed server every day.
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Other systems

● Same building blocks:

– SSH for communicating between machines, 
authentication, encryption all in one go.

– Perl (mostly, some python, go, haskell)
– Postgres – We like our data and we want to keep it
– Create packages for our tools, so they install with apt 

/ yum
– Our tools get updated by the same process as 

managed updates



  

mythic beasts

Process (ideal)

● Work out how to do it once and document it

● Turn into a procedure to standardise

● Automate auditing your instances

● Start automating the easiest setup stages

● Repeat until it’s just a handful of commands

● Build into our control panel / operating system package

● Forget how it works

● Discover you have thousands of customers using it

– and paying for it!
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Find out more

https://blog.mythic-beasts.com

@Mythic_Beasts

pete@mythic-beasts.com
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