

mythic beasts

I have pre-emptively replaced you
with a very small shell script

Automating all the things.
Pete Stevens

Mythic Beasts Ltd

mythic beasts

Job Offer

● I am on the lookout for a Junior Network Bod
to help with a data cleanse. Essentially make
sure our Config Management DB matches
what’s on the live network and correct any
discrepancies.

● I would imagine it would be a 3 month
contract. Anyone interested please get in
touch.

mythic beasts

Network Audit

● Management hat
– Employ someone with valuable skills

(networking)
– To do something really boring (auditing)
– Disruptive (network changes or config

management changes to fix)
– With archeaology (why is prod different to

config management?)

mythic beasts

Network Audit

● Misses important points

– How to stop prod drifting from config mangement
– Without crippling the organisation waiting on a dev

team to upgrade the config management system
rules

– 3 months, that’s time for more drift to occur
– Really want to audit once per week

● Or once per day
● Or once per hour

mythic beasts

Automating Network Auditing

● Standard tools don’t work, e.g. diff
– 2a00:1098::1 vs

2a00:1098::0:1
– confederation peers a b c vs

confederation peers b c a
● show running-config might not give you

exactly the same format back that you put in
● Some things change all the time (prefix lists)

mythic beasts

Automating Network Audit

● We have a series of configuration files that describe (almost) our
entire network configuration

● routers.yaml

– Knows about every network interface and IP address on every
router, and the type of interfaces

● Customer / inter-site / Internet Exchange / Transit
● Magically works out all the BGP sessions needed

● customers.yaml

– Knows about every customer that takes BGP from us
● Work out what customer IP is in which router IP subnet

and you can magically generate all the bgp sessions

mythic beasts

Automating Network Audit

● static.yaml

– Contains static routes for customers we transit
– Use this to generate more of our network config

● peers

– Tab separated file (hystorical reasons)
– Needs to migrate to a database and get auto-

populated from peeringDB
– Auto build peering config and filters from file + RADB
– Update peer filters regularly and automatically

mythic beasts

Automating Network Audit

● We can now generate all our BGP config for
any given router.

● Context aware diff:
– Canonicalise all IP addresses so text match

works
– Re-order confederations and similar so

match works
– Check prefix lists exist but not contents –

prefix lists change too fast

mythic beasts

Automating Network Audit

● We can now audit a router config quickly

– Including building all of our customer prefix lists
from RADB, we can audit a router in around 30s

– Process is now:
● Audit router
● Fix config management or production config
● Re-audit
● Repeat until no errors.

– Once no errors, schedule daily audits and fix new
errors as they arrive

mythic beasts

Benefits of an audited network

● We caught fat finger errors (especially IPv6)

● This one slipped through manual checks for years:

– Should be:
● neighbor 2a00:1098:2::5d5d:8563 update-source

2a00:1098:2::5d5d:8566
– Was actually:

● neighbor 2a00:1098:2::5d5d:8563 update-source
2a00:1098:2::5d5d:8565

– The typo’d address meant we didn’t have full v6
redundancy in one site for several years, all v6 went
through one router

mythic beasts

Benefits of automatically auditing

● We know what config we’re running
● If someone monkey patches we find out

quickly
● Doesn’t prohibit an under-duress hotfix

– Doesn’t let you forget about it!

mythic beasts

Not Just Networks

● Billing User < � billing@mythic-beasts.com>
● Date: Thu, 04 Apr 2019 10:11:11 +0100
● Unbilled VDSs on vds-ams-a: maryland

● We audit our entire VM estate every day.

mailto:billing@mythic-beasts.com

mythic beasts

Not Just Networks

● 11:20:08 <richard> anyone know anything about
vds:maryland which is on vds-ams-a?

● 11:28:44 <avf> richard, that's not the VDS of the
person who wanted his account cancelled, is it?

● 11:29:20 <richard> a/c XXXXX
● 11:29:33 <richard> service cancelled, but

evidently not properly
● 11:30:10 <avf> that'd be my fault, I assumed it

would be cleaned up automatically

mythic beasts

Infrastructure as code

mythic beasts

Leprechaun

mythic beasts

Hipsters beware

mythic beasts

Our config file format is Perl

$tag = 'B00003n0s';

add_asset({

 tag => $tag, height => 3, owner => 'mb', y => $y,

 type => 'server', side => 'f', name => 'leprechaun',

 });

foreach my $port (1 .. 8) {

 add_port ({device => 'leprechaun', type => 'serial', port_index =>
"1.$port" });

 add_port ({device => 'leprechaun', type => 'serial', port_index =>
"2.$port" });

}

mythic beasts

We call functions in config

add_connexion($tag.':power', 'ms-cam-8-1:power:8');

add_connexion($tag.':net:0', 'sw-cam-8-2:net:11');

add_connexion($tag.':net:1', 'sw-cam-8-2:net:19');

mythic beasts

Auditing

● We can automatically check things from here
● Compile time checks:

– Do we think a port has more than one device
connected?

– Is each end of a connection connected to
something we know about

– Asset tags are self checksumming, spot typos
– Does everything that needs a connection have

one (e.g. do we know where every power lead is)

mythic beasts

More auditing

● Dynamic checks

– Does every device have a DNS record?

– Is it powered on?

– Is the switch port up?

– Do we have any up switch ports where we don’t know what’s
connected?

● Run a full audit of every site weekly

– Generates tickets for people to inspect and fix when next on
site

– If someone unplugged everything and put it in a pile, we could
put it back

●

mythic beasts

Audit will tell you where to plug it in

mythic beasts

Cross-system integration

● Automatically build MRTG configuration

– Power graphs for every power bar
– Summaries for every rack
– Graphs for every switch port
– Summaries for groups of ports (Ixes,Transit)
– Summaries for racks (power)
– Entire config built automatically by cron
– Add a router interface to a transit provider,

automagically appears in your graphs

mythic beasts

Feeds the control panel

● From an asset tag we can discover
automatically
– Which switch port
– Which power port
– Which serial port
– Network addresses
– Bandwidth usage
– Physical location lit up in red on the picture

mythic beasts

Billing is key

● Billing attaches things to customers

– No billing record, no automatic config, service doesn’t work.

– We learned this in 2007 when we ceased being a part time
operation

– About 1/5th of our customers had never been invoiced.
● We’d set them up, added a note to invoice later and never

done it
● Same was true for Bluelinux (acquisition in 2012)
● Bhost also had unbilled VMs they’d forgotten about
● Due diligence on acquisitions always now involves a

physical audit

mythic beasts

Control panel populates itself

mythic beasts

mythic beasts

mythic beasts

Control panel populates itself

mythic beasts

mythic beasts

mythic beasts

Auto-config

● Munin config – automatic from billing database
● DHCP/recovery config – automatic from database
● Monitoring – port scan all managed servers daily

– Create ping/ssh/smtp/imap/pop automagically
– Create ticket for content-aware http/https
– Ping/ssh created in recovery so uptime not

accurate

mythic beasts

Internal plumbing

Paul: “everything should be REST. REST APIs are
nice to work with. SSH forced commands
always end up as a hideous mess of awk, sed
and xargs.”

Toby: “everything should be SSH forced
commands. We use SSH for admin anyway.
REST APIs mean another service to keep running
and secure, separate auth config, etc. “

mythic beasts

SSH APIs

● We make extensive use of SSH APIs for
internal plumbing:
– REST API style (hierarchical endpoints,

JSON in, JSON out)
– SSH transport and authentication

mythic beasts

SSH API

$ ssh -i .ssh/id_rpi_manage pifs-mer-a /unused

{

 "content": {

 "unused": 3

 }

}

$ ssh -i .ssh/id_rpi_manage pifs-mer-a
/rpi/rpi:pete/reboot

{"content":null}

mythic beasts

Access control

root@rpi-fileserver1:~# cat .ssh/authorized_keys

ssh-rsa AAAAB3...WnL Mythic Beasts admin key
mythic-rpihosting

command="/home/rpi/rpi/rpi-manage" ssh-rsa
AAAAB3...3Qf ctrlpanel@billing

End point is communicated via $SSH_ORIGINAL_COMMAND

mythic beasts

SSH APIs

● Client and server SSH API libraries:

– Take care of capturing stdout, stderr, exit codes, etc.
● Very quick to develop and deploy

● We use SSH for admin anyway, so all admin access is
managed in one place

● SSHFP + DNSSEC avoids the “accept host key” problem
when provisioning new servers

– This is harder than it should be and not yet
complete.

mythic beasts

Managed Updates

● We have thousands of managed customer servers
which we need to security update

● Run a mixture of debian/ubuntu/centos stable
versions

● Customers have root and can configure themselves
– we can’t use puppet/chef/ansible as we’re not
definitive for all configuration

● Cattle not pets is great in theory but we run a
cattery

mythic beasts

… and a luxury cattery at that!

mythic beasts

Managed Updates

● If we see a critical update for apache we want
to upgrade just that package now, by
running:

apt-get install apache2.2

or
apt-get install apache 2.4

or
yum update httpd

mythic beasts

Managed Updates

● We used to install a standard management
key on all customer servers, but that’s a
security nightmare

● One or more keys per customer
● Private key can’t be accessed by staff, they

can only request a session on a customer
server

● No agent fowarding, and only the customer-
specific key when we log in – minimise risks

mythic beasts

Managed bulk update process

mythic beasts

Managed bulk update process

mythic beasts

Managed bulk update process

mythic beasts

Managed bulk update process

mythic beasts

Managed bulk update process

mythic beasts

Managed bulk update process

mythic beasts

Managed bulk update process

mythic beasts

Managed bulk update process

● A 0 day update completes in around an hour
● A monthly update for a data centre

completes in about 90 minutes
● We limit updates to 40 at a time

– Potentially multiple virtual servers on the
same physical host

– Avoid overloading the CPU or IO
subsystem

mythic beasts

In practice

mythic beasts

Other systems

● Domains – automate nominet / OpenSRS

● DNS – automate bind

● DNSSEC – automate bind and OpenSRS and nominet

● Hosting accounts – automate apache/dovecot/exim

● Virtual machines – automate KVM on Debian

● Containers – automate LXC on Debian (no docker – we care
about persistence!)

● Reporter – daily read firewall / disks / processes etc.

– Things an experienced admin asks an undocumented
machine, we log for every managed server every day.

mythic beasts

Other systems

● Same building blocks:

– SSH for communicating between machines,
authentication, encryption all in one go.

– Perl (mostly, some python, go, haskell)
– Postgres – We like our data and we want to keep it
– Create packages for our tools, so they install with apt

/ yum
– Our tools get updated by the same process as

managed updates

mythic beasts

Process (ideal)

● Work out how to do it once and document it

● Turn into a procedure to standardise

● Automate auditing your instances

● Start automating the easiest setup stages

● Repeat until it’s just a handful of commands

● Build into our control panel / operating system package

● Forget how it works

● Discover you have thousands of customers using it

– and paying for it!

mythic beasts

Find out more

https://blog.mythic-beasts.com

@Mythic_Beasts

pete@mythic-beasts.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

