
What Does A Good Design
Look Like?

Some DOs and DON’Ts of technical design

James Bensley @ UKNOF45

Introduction

● Who:
● James Bensley

● Designing/building/supporting/decommissioning for 10+ years

● I’ve broken many things, and designed many monstrosities…

Introduction

● What:
● Not this: “a good L3 VPN design must include …”

- This is specific to your project

● This: “technically agnostic guidelines any design should
follow”

Introduction

● Why:
● Experience has taught me the importance of identifying the

correct decisions that need to be made early on, in order to
deliver the required solution

● Failing to meet expectations is worse than a “broken” solution

● These problems aren’t going away (p.s. automation sucks!)

Introduction

● How:
● Improve the solution design whilst still in the design phase

● Share real experiences from networks/projects I’ve worked on
(there are no “courses” on network design)

Engineering Doesn’t Require
Complexity

Engineering Doesn’t Require Complexity

● “Engineering” is typically associated with technical complexity
o Overengineering is my biggest issue with technical design

work

● Many respected figures agree:
o “Simplicity is the ultimate sophistication” – Leonardo da Vinci
o “Simplicity is a prerequisite for reliability” – Edsger Dijkstra
o “E=MC2” – Albert Einstein

● KISS

Engineering Doesn’t Require Complexity

● The technical aspects of your job are rarely the most demanding

E.g., it’s tough working in teams with:
o mixed technical abilities
o mixed skill sets
o mixed availabilities
o mixed [communicative] language proficiencies

Engineering Doesn’t Require Complexity

● Techies don’t need to memorise $really_complex_thing

● Engineers/Architects/Designers/Technicians need to be
multifaceted and pragmatic. The E/A/D/T job is to translate
between business requirements and reasonable technical
methods

Engineering Requires Balance

Engineering Requires Balance

● Every solution creates strain on different business resources,
engineers need to balance the impact of their solution:

Engineering Requires Balance

● For example; “which device should we use for this project?”

One has to balance the tradeoffs between each of the following:
o Cost (to please finance managers)
o Lead time (to please project managers)
o Vendor SLAs (to please account managers)
o Complexity (to please support teams)
o Functionality (to please customers)
o Compliance (to please auditors)
o Standardisation (to please implementation teams)

Design Decisions
and Examples

Design Decisions: Requirements and Cost

● DO: Design a solution that satisfies the problem definition

● DON’T: Design what you think would be “like, so cool yeah!”

● DO: Keep in mind the budgetary constraints

● DON’T: Search default to the cheapest possible solution

Example Scenario: Requirements

● 100G link = 85% spare capacity

● Operationally simpler

● Can easily add more 10G links

● LAG/ECMP are “known” evils

Task: “I need 15G of connectivity from A to B”

2x10Gbps 1x100Gbps

Example Scenario: Cost

● 100G port and optic is cheapish

● 100G rental is not as cheap

● 10G ports and optics are cheap

● 10G rental is cheap

Task: “I need 15G of connectivity from A to B”

2x10Gbps 1x100Gbps

Design Decisions: Scope and Deliverables

● DO: Clarify unambiguously what the project requirements are
(ambiguity == problems)

● DO: Confirm if the requirements can be broken down
(time > features)

Example Scenario: Deliverables

● Deliverable “provide an Internet connection at location xyz”

o Too specific: “We’ll provide connectivity using four twisted pair
copper cables, with each pair signalling at a frequency of 125
Mhz using a 5-level encoding scheme, to achieve a Layer 1 bit
rate of 1.25Gbps, with a 2.5 volt peak average differential per
twisted copper pair to maintain DC balance…”

o Not specific enough: “A 1Gbps handover interface”

o Seems OK: “A 1000Base-T Ethernet handover interface using
RJ45 terminated Cat5e cable”

Design Decisions: Documentation and Support

● DO: Think about how you will document the solution. If you can’t
easily explain it, how will others understand it?

● DO: Think about how on-call engineers will have to troubleshoot
the solution at 03.00 AM
(HLA, HLD, LLD, config templates, wiki, KB articles, cheat-
sheets)

Design OperationsProduction

Design Decisions: Documentation and Support

Design Decisions: Documentation and Support

● DO: Try to be so specific in your documentation that you don’t
need configuration examples
(they are the code comments of network engineering)

● DON’T: Mix disciplines, try to make failure domains that a single
person or team can troubleshoot

Example Scenario: Monitoring

A customer RFP listed sub-second
network failure detection and
mitigation as a requirement for a
standard service.

It also required that the NMS be
able to prove that the failure was
detected and mitigated in less than
1 second!

Who polls once per second or
faster? How else could this be
monitored?

Design Decisions: Upgrades and Failures

● DO: Think about how you will keep the design clean over time, will
it “deteriorate” over time and become unclean?

● DO: Consider the upgrade path of the design for the reasonable
future

OSI Model Potential Lifetime
Layer 4 - Transport 10s of months?
Layer 3 - Network Single digit years?
Layer 2 - Data Up to a decade?
Layer 1 - Physical Multiple decades?

Design Decisions: Upgrades and Failures

● DO: Consider the different failure scenarios that can happen and
their individual likelihood, is there a dependency tree of cascading
failures?

● DON’T: Limit your consideration to technical failures:
“if you design it they will use it”

Example Scenario: Expected Failures

Below all services are dual homed to two routers in DC 1, and all
services are replicated in DC 2 and dual-homed to another pair of
routers there, N+N resiliency, WTFCGW?

Example Scenario: Unexpected Failures

RTBH Routing à Prefix length validation?
RTBH Routing à Prefix validation?
RTBH Routing à Prefix purpose?

Questions?
send delayed thoughts of love/hate/confusion to: jwbensley@gmail.com

http://gmail.com

Review…

Review

● Requirements: Define the requirement and solution as clearly as
possible, demand clarification where ambiguity exists.
Continuously refer back to the requirements and evidence
fulfilment in your design documents.

● Cost: Keep in mind your budgetary constraints but don’t use sub-
par materials to please finance.

● Scope: Ensure the scope of the design is clear, explicitly state
what isn’t included (rather than implicitly by ambiguously not
mentioning something). When it’s agreed that something is out of
scope or not required, record who approved that exclusion and
why.

● Deliverables: Ensure everyone knows who’s responsible for
which areas of the design, and when each milestone is due.

Review

● Documentation: Document how something should behave, how it
behaved when tested, what happened when testing failure
scenarios, what happened during failures in production, are there
any unknowns?

● Support: Break the design into smaller managable sections.
Create cheat-sheets for troubleshooting these sections. Have
operational handover and training sessions to educate the NOC.
Have another one 12 months from now when everyone has
forgotten. If a big outage occurs after 6 months, move back that
12 month review by another 6 months.

Review

● Operational Acceptance: Have someone else validate the
deployment is working as expected. If they couldn’t it does work
or they don’t understand the design. Share knowledge across
team members/colleagues and other teams. Pro-actively train
operational support teams rather than assuming they’ll get
around to reading the documentation before there’s an outage.

Review

● Standardisation: This is a top priority with simplicity. Create
standard products (config templates, monitoring templates,
support templates) and reuse them throughout your designs. Can
you easily hire someone to continue this work? Technical debt
doesn’t only exist in a team in the present, but also in the future.

● Monitoring: If you can’t easily monitor it, how difficult will it be to
add that functionality to your NMS? Will an upgrade of the NMS
break that feature? Monitoring is not exempt from the
simplicity/standardisation/supportability requirements, as soon as
you can’t monitor a service you’re in trouble.

Review

● Upgrades: Try to think either a horizontal upgrade path (can we
deploy more pizza boxes or add more line cards?) or a vertical
upgrade path (what is the next generation of devices that will
supersede the current ones?).

● Failures: They definitely will happen. Test the mostly likely ones
to know what they look like on the CLI/via Syslog/NMS/from the
customers perspective. What seemingly non-related
infrastructure failures could impact this design?

Review

● In-Life Maintenance: In the best case scenario that the
product/service is widely deployed, it shouldn’t be cumbersome to
maintain with scale.

● Decommissioning: If the documentation is up to date and all the
components are standardised it should be simple but, the reality
is config-rot or CMDB-rot.

Review

● Complexity: Avoid complexity as much as possible, there is a
direct correlation between complexity and
support/billing/customer overhead.

● Operations: When trying to balance between design decisions,
default to what's best for your operations, not the customer;
there’ll be other customers and you need to sleep at night.

Review

