

INEX

• Peering point for the island of
Ireland, member owned
associa8on, not for profit,
founded in 1996

• ~100 members

• Peak of ~400Gbps

• Dual infrastructure, 8 PoPs,
own dark fibre

• Opened INEX Cork in 2016

• Home of IXP Manager

An open protocol to allow
secure authoriza0on in a

simple and standard method
from web, mobile and
desktop applica6ons.

— OAuth 2.0 Defini0on

Why is this relevant for network
operators?

OAuth 2.0 Roles

• The resource owner is the end-user (for us at least).

• The client is the third party applica1on looking for
access to the user's account.

• The authoriza0on server is that which presents the
interface for the user to approve / deny access to
the client.

• The resource server is the API server used to
access the user's informa@on (o5en the same as the
authoriza1on server).

OAuth 2.0 - IDs, Secrets and URLs

Example OAuth Process

Let's look at IXP Manager with PeeringDB.

What happens if we click on Login with PeeringDB?

Example OAuth Process

User clicks on Login with PeeringDB [1]:

1. HTTP GET request to client [2]: /auth/login/
peeringdb

2. Returns a HTTP redirect response to send the user
to [3]:

 https://auth.peeringdb.com/oauth2/authorize/
 ?response_type=code
 &client_id=CLIENT_ID
 &redirect_uri=REDIRECT_URI
 &scope=profile+email+networks
 &state=1234zyx

UVeU

(1) ClickV "LRg iQ ZiWh..."

(2) HTTP GET ReTXeVW fRU OAXWh PURceVV

(3) OAXWh UeTXeVW fRU AUTH_CODE

(4) AXWhRUi]aWiRQ VeUYeU UeTXiUeV XVeU aXWhRUi]aWiRQ

ClieQW

AXWhRUi]aWiRQ (aQd UeVRXUce)
VeUYeU

Example OAuth Process

Asked to authorize INEX's IXP Manager [4].
(And note the requested scopes)

Example OAuth Process

If the user clicks authorize [5], the authoriza5on
service redirects back via the (verified) redirect URL
[6] with an authoriza5on code:

https://www.someix-ixpmanager/auth/login/peeringdb/callback
 ?code=AUTH_CODE
 &state=1234zyx

Note that (a) use of TLS mandatory; (b) redirect URL
must match what was registered for the client; and (c)
client must compare received state to what was sent.

UVeU

(1) COLcNV "LRg LQ ZLWh..."

(2) HTTP GET ReTXeVW fRU OAXWh PURceVV

(3) OAXWh UeTXeVW fRU AUTH_CODE

(4) AXWhRUL]aWLRQ VeUYeU UeTXLUeV XVeU aXWhRUL]aWLRQ

(5) UVeUV aXWhRUL]eV acceVV

(6) HTTP RedLUecW bacN WR cOLeQW aSSOLcaWLRQ

COLeQW

AXWhRUL]aWLRQ (aQd UeVRXUce)
VeUYeU

Example OAuth Process

In the background, the client now uses the
code=AUTH_CODE received to get an access token
via a POST request to the authoriza-on server [7].

 https://auth.peeringdb.com/oauth2/token/
 ?grant_type=authorization_code
 &code=AUTH_CODE
 &redirect_uri=REDIRECT_URI
 &client_id=CLIENT_ID
 &client_secret=CLIENT_SECRET

UVHU

(1) COLcNV "LRJ LQ ZLWK..."

(2) HTTP GET RHTXHVW IRU OAXWK PURcHVV

(3) OAXWK UHTXHVW IRU AUTH_CODE

(4) AXWKRUL]aWLRQ VHUYHU UHTXLUHV XVHU aXWKRUL]aWLRQ

(5) UVHUV aXWKRUL]HV accHVV

(6) HTTP RHGLUHcW bacN WR cOLHQW aSSOLcaWLRQ

(7
) R

HT
XH

VW
 /

JH
W A

CC
ES

S_
TO

KE
N

COLHQW

AXWKRUL]aWLRQ (aQG UHVRXUcH)
VHUYHU

Example OAuth Process

Once the client has an access token, it can request user
informa2on with the scope(s) that it has been
authorized for via HTTP GET [8].

 https://auth.peeringdb.com/profile/v1

 HTTP Headers:
 Authorization: Bearer ACCESS_TOKEN

UVHU

(1) COLFNV "LRJ LQ ZLWK..."

(2) HTTP GET RHTXHVW IRU OAXWK PURFHVV

(3) OAXWK UHTXHVW IRU AUTH_CODE

(4) AXWKRUL]aWLRQ VHUYHU UHTXLUHV XVHU aXWKRUL]aWLRQ

(5) UVHUV aXWKRUL]HV aFFHVV

(6) HTTP RHGLUHFW baFN WR FOLHQW aSSOLFaWLRQ

(7
) R

HT
XH

VW
 /

JH
W A

CC
ES

S_
TO

KE
N

(8
) R

HT
XH

VW
 /

JH
W X

VH
U S

UR
ÀOH

COLHQW

AXWKRUL]aWLRQ (aQG UHVRXUFH)
VHUYHU

UVHU

(1) COLFNV "LRJ LQ ZLWK..."

(2) HTTP GET RHTXHVW IRU OAXWK PURFHVV

(3) OAXWK UHTXHVW IRU AUTH_CODE

(4) AXWKRUL]aWLRQ VHUYHU UHTXLUHV XVHU aXWKRUL]aWLRQ

(5) UVHUV aXWKRUL]HV aFFHVV

(6) HTTP RHGLUHFW EaFN WR FOLHQW aSSOLFaWLRQ

(7
) R

HT
XH

VW
 /

JH
W A

CC
ES

S_
TO

KE
N

(8
) R

HT
XH

VW
 /

JH
W X

VH
U S

UR
ÀOH

(9) UVHU UHJLVWHUHG / ORJJHG LQ
COLHQW

AXWKRUL]aWLRQ (aQG UHVRXUFH)
VHUYHU

Example OAuth Process
Remember, from a user perspec.ve, this is usually two clicks.

1. Click Login with PeeringDB [1]

• browser gets redirected to PeeringDB asking for user permission [2,3,4].

2. Grant permission [5]

• browser gets redirected back to client from authorizaDon server [6]

• client receives AUTH_CODE which is exchanges for an ACCESS_TOKEN
[6,7]

• client uses ACCESS_TOKEN to get user informaDon [8]

• client creates and/or logs user in

3. User logged into client applicaDon. [9]

Sample User Profile from PeeringDB
 {
 "id": 9999,
 "name": "Barry O'Donovan",
 "given_name": "Barry",
 "family_name": "O'Donovan",
 "email": "barry.odonovan@inex.ie",
 "verified_user": true,
 "verified_email": true,
 "networks": [
 {
 "perms": 15, "asn": 65500, "name": "Acme Net", "id": 9999
 }, {
 "perms": 15, "asn": 65501, "name": "Example Net", "id": 9998
 }
]
 }

IXP Manager Verifica/on (1/2)

How does IXP Manager validate & use user detail from
PeeringDB?

• data structure okay (user details present, network(s)
present)?

• user has verified_user and verified_email with
PeeringDB?

• at least one of the networks are IX members?

• load (by PeeringDB ID) or create user object in IXP Manager

• created user is a read-only user by default

IXP Manager Verifica/on (2/2)
• remove any user/network associa3ons in IXP Manager that

previously came from PeeringDB but are no longer present in
the new PeeringDB network list

• add any new user/network associa3ons (only if a normal
peering network that is current, connected and hasn't
requested PeeringDB OAuth be disabled for them)

Then either:

• if no user/network associa1ons at end of process, delete user;

• otherwise log user in.

Do We Trust PeeringDB?

So Do We Trust PeeringDB?
 This is a reasonably small industry
where the significant human actors

are well known to many of us.

So yes, we trust PeeringDB
!

(evaluate your own security/threat model!)

What Are the Risks?

1. OAuth protocol is well understood, widely used
and proven.

2. IXP Manager and PeeringDB use well established
libraries for OAuth server / client.

3. ImplementaEon issues?

What's the Exposure

To my mind, not a lot:

• Port details, IP addressing, NOC details (available
via IX-F Export, PeeringDB, IX website)

• Traffic graphs, peer to peer graphs

• Again, read-only access by default

• Again, absolutely no superadmin access via OAuth

INEX's Experience with PeeringDB OAuth

• Launched August 29th, 2019

• 26 new users created in first two months:

• 19 via PeeringDB, 2 by member admins, 5 by ops
team

• i.e. 73% of new users required no other actor

• Feedback has been 100% posiLve

• no member has requested an opt-out

• Found issue with mailing list subscripLons.

IXP Manager Support
• Released in IXP Manager v5.2.0 on September 20th

• Enabling PeeringDB OAuth is really easy1:

1. Register your IXP Manager instance as an OAuth applica:on
on PeeringDB.

2. Add configura:on elements to .env:

AUTH_PEERINGDB_ENABLED=true
PEERINGDB_OAUTH_CLIENT_ID="xxx"
PEERINGDB_OAUTH_CLIENT_SECRET="xxx"

1 h$ps://docs.ixpmanager.org/features/peeringdb-oauth/

%23oauth-pdb-secrets
%23oauth-pdb-secrets
https://docs.ixpmanager.org/features/peeringdb-oauth/

References

• IXP Manager PeeringDB OAuth Documenta7on

• PeeringDB OAuth 2.0 Documenta7on

• OAuth 2.0 Community Site

• rfc6749, rfc6750, rfc6819

• OAuth 2 Simplified - excellent blog post.

• Laravel Socialite and Laravel Passport (via oauth2-
server)

• Python Django Oauth Toolkit (via OAuthLib)

https://docs.ixpmanager.org/features/peeringdb-oauth/
https://docs.peeringdb.com/oauth/
https://oauth.net/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6819
https://aaronparecki.com/oauth-2-simplified/
https://laravel.com/docs/6.x/socialite
https://laravel.com/docs/6.x/passport
https://github.com/thephpleague/oauth2-server
https://github.com/thephpleague/oauth2-server
https://django-oauth-toolkit.readthedocs.io/en/latest/
https://github.com/oauthlib/oauthlib

Thank You!
@ComePeerWithMe - @barryo79

h"ps://www.inex.ie/

h"ps://www.ixpmanager.org/

https://twitter.com/ComePeerWithMe
https://twitter.com/barryo79
https://www.inex.ie/
https://www.ixpmanager.org/

