Network Planning and Path Computation for Next Generation Networks

ARIA Networks

Intelligence for Next Generation Networks

Daniel King daniel.king@aria-networks.com +44 (0)1249 665923

© 2005. The Copyright in this document belongs to Aria Networks Ltd.

- Introduction to Aria Networks
- Next Generation Networks
- Solving NGN Problems
- What is complex path computation?
- Existing path computation techniques
- Holistic Path Computation
- Non-Heuristic Solutions
- What does the future hold?
- Conclusion

What does Aria do?

- Founded to fundamentally change the way complex, converged networks are designed, planned and operated
- Develops *intelligent* software solutions
 - Based on proven Artificial Intelligence
 - Distributed software architecture
 - Offline and online (real-time) capable
- *iVNT* provides fast and assured deployment of Next-Generation networks and services, reduces complexity and total cost of NGN ownership, and enables network operators to guarantee delivery of customer service level agreements

intelligent Virtual Network Topologies (iVNT)

- Convergence means the integration of these services over a common infrastructure and provision through a single point of attachment
- Voice, Video, and Internet
 - Why stop at triple play? Quad-play, Multi-play, Gaming, etc.
- The customer expects:
 - Rapid delivery of new services
 - Greater bandwidth
 - Higher QoS
 - More sophisticated SLAs
- The provider needs to:
 - Drive up income from deployed resources
 - Provide more complex services within existing networks
 - Find a way to deliver QoS and meet SLAs
 - Whilst reducing operational costs

- Throwing bandwidth at the problem?
 - A guaranteed fat pipe is a good way to deliver quality
 - High-speed delivery addresses delay problems
 - Jitter can be handled in buffering
 - But bandwidth may be expensive and impractical and doesn't solve all issues
 - Inevitably, even in a lightly used network, some links reach critical utilisation
 - It can be hard to predict which links these will be in failure scenarios
 - New customers can cause unforeseen congestion points
 - Increasing capacity cannot be done on demand
- Better network planning and appropriate reoptimisation of services
 - Requires complex path computation capabilities
 - Model the entire network (multi-layer modelling)
 - Consider all current services and compute in parallel not serial
- Respond to network events and deliver services in real-time
 - Requires online path computation capabilities

What is Complex Path Computation?

- Support of complex services:
 - P2P and P2MP based service types
 - High levels of QoS demand multiple constraints
 - Minimal cost, minimal delay, high bandwidth,
 - Constraints may be conflicting
 - Multiple connections (LSPs) to support one service
 - VCAT, load-sharing, protection
 - Resource continuity issues
 - Transparent or semi-transparent optical networks
 - MS-SPRing timeslot continuity
- Path diversity or congruence:
 - End-to-end Protection
 - VCAT

- Mesh protection resource sharing
- m:n protection
- Concurrent network-wide optimisation and re-optimisation

Solving Complex Network Problems

- Where is my traffic flowing today?
- Where do I place new resources, such as links and switches?
- What resource capacities do I require?
- How do I design my network to minimise or negate the impact of resource failures?
- What configuration metrics do I place on the network equipment that will influence traffic flows and quality of service?

- Where is the most cost-effective place to add new resources to accommodate anticipated traffic growth?
- What is the most effect mechanism for carrying new types of services?
- Which protection mechanism is most effective for network topology and service types I currently have?
- What if...?

Existing Computation Techniques

- Single-service computations
 - CSPF is perfectly functional
 - Optimal paths for single LSPs with multiple constraints
 - Modified CSPF can compute multiple paths
 - Good for solving k-disjoint paths
 - Conventionally used to satisfy real-time requirements
- Linear programming can optimise a whole network
 - Can take long periods to develop
 - Not flexible to changing demands, new topologies, new constraints, or new service types
- But can it do it fast enough?

- More constraints mean slower computation times
- More paths mean more complex computation
- Larger networks are phenomenally complicated

- Solving the whole network is hard
 - Balance conflicting constraints for different services
 - Consider all services at once to avoid trap conditions
 - Huge networks with thousands of services
- Holistic path computation solves the entire network in one pass
 - Necessary for full optimisation
 - Needs to be adaptive to changes in topology and services
 - Must be flexible to mixes of service types (P2P, P2MP, etc.)
- Evolution to multilayer path computation
 - IP over MPLS over Optical

- Conventional algorithms are deterministic
 - Same solution every time
 - Normally tuned to the specific topologies
 - Cannot handle multiple service types
 - Generally slow when handling large networks with many elements
- Non-heuristic processes assess the network and derive an optimal solution
 - May produce a different, but correct solution each time
 - Is able to handle a variety of topologies
 - Is able to manage different service types

What are Non-Heuristic Solutions?

- Artificial Intelligence
- Evolutionary/Genetic programming
 - Good at learning new problems and modifying existing algorithms.
 - Lend themselves to parallel computation
- Neural Networks
 - Very good at complex problems
 - Need to be designed and trained for the specific problem
 - Inflexible to changes in networks and services
- Next generation Spiking Neural Networks
 - For example, Aria's Darwinian Neural Networks (DNNs)
 - Self-modifying, self-training, multi-dimensional NNs
 - Dramatic speed and power
 - Highly flexible
- Algorithm hosting platforms
 - Why choose one algorithm to solve all problems?

What does the future hold?

- Highly sophisticated planning and modelling tools
 - Network failure analysis
 - Capacity planning
 - Rapid turn-around of network experiments
 - Multilayer network modelling
 - Concurrent network re-optimisation
- Online and integrated planning and activation
 - NMS & OSS
 - Path Computation Elements (PCE)
- On-line automated reoptimisation
 - Dynamic reconfiguration of networks within configured parameters

Currently:

- There is a demand for more sophisticated network services
- Increasing pressure on carriers to make money from limited resources
- Most computation tools are sub-optimal
- Conventional linear programming techniques are powerful, but not flexible enough

But

- Non-deterministic algorithms are able to solve complex problems
- Need to use multiple constraints for efficient network utilisation and service placement
- Consider network wide concurrent optimisation
- True multilayer path computation is achievable

Daniel King daniel.king@aria-networks.com www.aria-networks.com