UKNOF(51)

"WEAPONIZING MOBILE INFRASTRUCTURE"

Are Politically Motivated Cyberattacks a Threat to Democracy?

Lead Security Architect/Researcher

Imran Saleem

Mobileum

AGENDA

- **1** Role of Cyber attacks in armed conflicts
- 2 The Missed Intel
- **3** Political shift can drive cyber-attacks
- 4 The Financial Impact
- 5 Work Ethics & Disclosure
- 6 Recommendations

ROLE OF CYBER ATTACKS IN ARMED CONFLICTS

© 2023 Mobileum, Inc. All rights reserved. Contains Confidential and Proprietary Information of Mobileum, Inc.

WHY CYBER WARFARE PLAYS A KEY ROLE IN ARMED CONFLICTS?

Espionage : Monitoring other countries to steal state secrets.

Sabotage : Hostile governments or terrorists may steal information or destroy it.

D/DoS : Prevent users from accessing legitimate service.

Electrical Grid or ICS: Attacking the power grid allows attackers to disable critical systems.

Propaganda : Attempts to control the minds and thoughts of people living in or fighting for a target country

Economic Disruptions : Attacking financial institutions or manipulating the stocks.

Historical Outlook to politically motivated Cyberattacks?

Nation state a phenomenon existed in past.

Target	Attack	Attribution
Estonia 2007	DDoS attacks on online services of banks, media outlets, and government bodies	Russia (state- sponsored groups)
Georgia	Combined cyber and kinetic attack	Russia (state-
2008	DDoS attacks on Georgian government websites, i.e. the president's website	sponsored groups)
Iran 2010	The Stuxnet worm attacked numerous centrifuges in Iran's Natanz uranium enrichment facility and caused physical destruction on the equipment controlled by the infected computers	The US and Israel (state actors)
WannaCry 2017	Ransomware attacks brought down numerous computer systems worldwide	North Korea (state- sponsored groups)
NotPetya 2017	Ransomware attacks brought down numerous computer systems worldwide	Russia (state- sponsored groups)

Sources: McAfee (2020); McGuinness (2017); Smith (2014); Ransomware Task Force (2021).

"THE MISSED INTEL"

"U.S" withdrawal from "AF"

TIMELINE OF U.S. WITHDRAWAL FROM AFGHANISTAN – REFLECTION

A geopolitical event leads to patterns captured on the global threat landscape which can provides useful insights on these developing situations.

Trump Strikes a Deal

Feb. 29, 2020 — U.S. and Taliban sign an <u>agreement</u> that sets the terms for a U.S. withdrawal from Afghanistan by May 1, 2021,

The US Exit: Views From Afghanistan's Civil Society

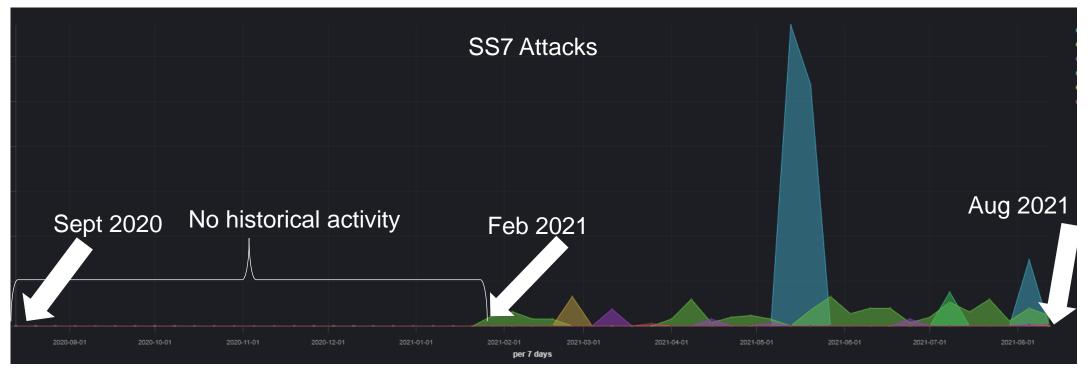
With Biden's announced timeline for full U.S. withdrawal, there's a looming question of failed promises in Afghanistan.

By Ritu Mahendru and Inshah Malik

https://thediplomat.com/2021/04/the-us-exit-the-view-from-afghanistan/

Biden Follows Through

April 14 ,2021— Saying it is "time to end the forever war," Biden announces that all troops will be removed from Afghanistan by Sept. 11.

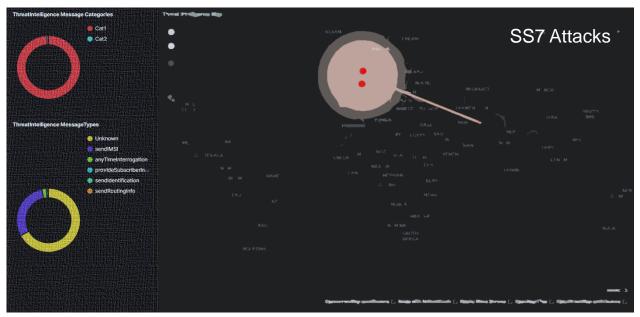

 $(\mathbf{f}) (\mathbf{y})$

U.S. WITHDRAWAL FROM AFGHANISTAN – A GLIMPSE OF INTELLIGENCE

Key Artifacts:

- Afghanistan was never prime target based on historical investigations.
- Malicious activities started to appear in Feb 2021 due to the political events and administrative changes closely aligns to April 2021
- The threat actor behind these operation are nefariously known and potentially have links to Nation state.
- Supported by a few other unresolved sources with the same origin.
- These sources were clustered.

© 2023 Mobileum, Inc. All rights reserved. Contains Confidential and Proprietary Information of Mobileum, Inc.


U.S. WITHDRAWAL FROM AFGHANISTAN – MOTIVE & TARGETS

Targets

- Prime targets : AF
- Secondary targets : Roamers in AF (Few from NATO Countries)

Potential victim Organization could be:

- News and Media
- NGO's
- Government Institutions

Motive

- IMSI Gathering and Network discovery
- Users Surveillance and tracking
- Potential communication interception at radio level.

Threat Indicators

• Bypass security controls (If any)

© 2023 Mobileum, Inc. All rights reserved. Contains Confidential and Proprietary Information of Mobileum, Inc.

POLITICAL SHIFT IN A REGION CAN DRIVE CYBER-ATTACKS!

© 2023 Mobileum, Inc. All rights reserved. Contains Confidential and Proprietary Information of Mobileum, Inc.

IS "UA" - "RU" CONFLICT ANY DIFFERENT THAN "AF".

Russia hacked Ukrainian satellite communications, officials believe

③ 25 March 2022

Russia hacked Ukrainian satellite communications, officials believe - BBC News

Ukraine war: Major internet provider suffers cyber-attack

③ 28 March 2022

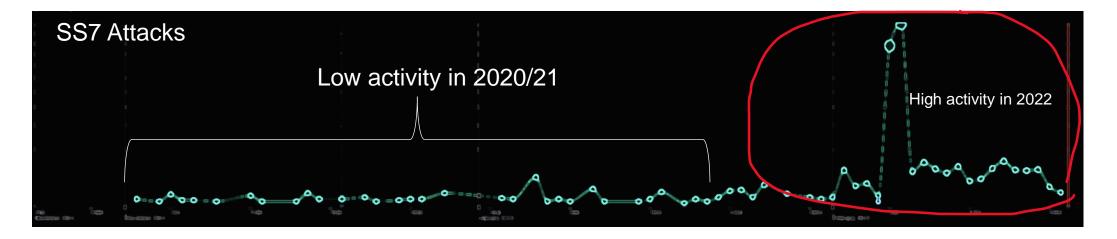
Ukratecom is geographically the biggest fixed internet provider in Ukraine
<u>Ukraine war: Major internet provider suffers cyber-attack - BBC News</u>

- Organized and coordinated.
- Consistent and motivated.
- Intel sharing is the key.

Does Telecom industry have a concrete intel sharing framework?

© 2023 Mobileum, Inc. All rights reserved. Contains Confidential and Proprietary Information of Mobileum, Inc.

	Λ		
9/5	0	Distributed denial-of-service (DDoS) attack aimed at filtering and re-routing online traffic to Russian-occupied Ukrainian territories.	
7/5	þ	Cyberattack against Odesa City Council in parallel to missile attack against Odesa's residential areas.	
22/4	þ	Cyberattack on Ukraine's national postal service.	
19/4	þ	Ukrainian citizens' payment data accessed via social media page survey.	on Ukraine: Timeline of cyber-attacks (europa.eu)
14/4	Ŷ	Public banking data accessed via Trojan malware.	on okiane. Inneine or cyber-attacks (europa.eu)
8/4	þ	Attempt to interrupt power stations.	
7/4	þ	Hackers steal media and government entities' user credentials.	
2/4	þ	Hackers steal Ukrainian government officials' user credentials.	Russia-linked cyberattacks on Ukraine A timeline
30/3	þ	MarsStealer plunders Ukrainian citizens and organisations' user credentials.	Atimeline
28/3	þ	Cyberattacks against Ukrtelecom and WordPress websites.	March ♀ DDoS attack aims at destabilising Ukrainian
20/3	þ	LoadEdge backdoor used to install surveillance software.	2014 computer networks and communications, diverting attention from Russian troop
18/3	þ	Phishing emails target several organisations.	operations in Crimea.
17/3	þ	Phishing emails target Ukrainian government and military.	May 🔷 Pro-Russian hacktivist group carries out
16/3	þ	Hacked TV station Ukraine 24 falsely reports that President Zelenskyy has called on the population to surrender.	2014 a series of cyberattacks to manipulate voting in Ukraine presidential elections (malware was removed but the election count was
14/3	þ	CaddyWiper malware infiltrates several Ukrainian organisations' computer systems.	delayed).
9/3	9	Cyberattack on a telecommunications service provider.	December ODDoS attack affects call centres and the network of three energy distribution
7/3	þ	Phishing attacks against citizens and government services.	companies, causing power outages for over 230 000 consumers.
4/3	þ	Malware launched against non-governmental, charity and aid organisations.	January O Disruptions in a Kyiv substation result 2016 in a one-hour power blackout.
28/2	þ	Attacks on Ukraine's digital infrastructure disable access to financial and energy resources.	June O NotPetya malware hits Chornobyl
25/2	þ	IssacWiper attack against government websites and a cyberattack aimed at a border check-point.	2017 nuclear power plant and infects multiple government and financial institutions,
24/2	0	Attack against the KA-SAT satellite network facilitates Russian invasion.	postal services, newspapers, transport infrastructure and businesses.
23/2	þ	Government websites targeted, and the HermeticWiper malware impacts financial, IT and aviation sector organisations.	July Attempted cyberattack on Auly chlorine 2018 distillation station, which serves 23 Ukrainian provinces.
15/2	0	DDoS attack disables Ukrainian government, banks and radio websites for several hours.	February Attempted cyberattack targets Ukraine's
14/2	0	Hackers display 'Wait for the worst' message on 70 government websites.	2021 security service websites.
13/2	0	Microsoft reports the existence of malware targeting the Ukrainian government and several non-profit and information	2022


technology organisations

10

UNDERSTANDING RUSSIAN SIGNALLING ACTIVITIES

In 2022, Russia sources intensified the activities by up to 150 times comparing to 2020/21 historical records.

- These activities were supported by malicious threat indicators known to potentially bypass security controls.
- Known techniques listed in the FS.11 few others not available in the guidelines.
- Key fact "fuzzing executed targeting various networks."

UNDERSTANDING THE "RU" BACKED STATE ACTORS

Key behavioural characteristics and threat landscape

- Is Ukraine and NATO countries on the only target = NO
- Attack Intensity = High
- Coverage = Extreme
- Current state = Active
- Targeting inbound roamers in NATO countries
- Clustered group
- Zero-day exploit = Observed (CVD Submission)
- Account takeover
- Identity spoofing
- Fuzzing
- Roughly 60+ countries were targeted.

ARE THESE "APT'S", GOVERNMENT-BACKED ATTACKERS?

Russian attackers aggressively pursue wartime advantage in cyberspace using global signalling.

Threat Intelligence team has uncovered set of attacks targeted towards Ukrainian and NATO countries with following objectives.

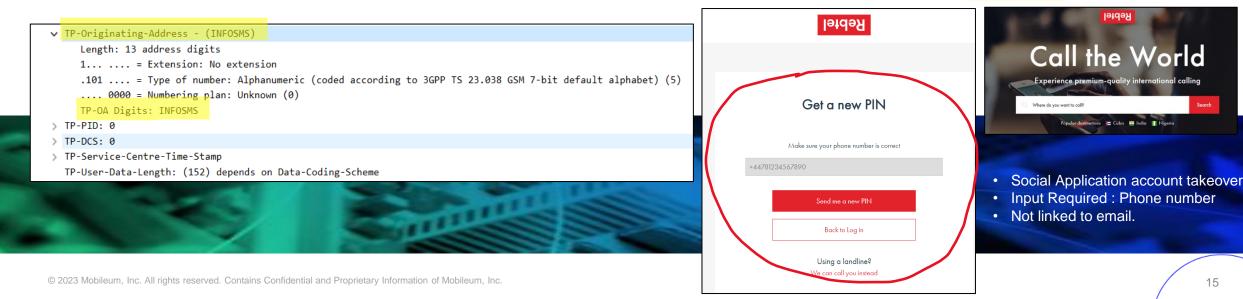
Attacks Involved	Unresolved Russian Origins	Targeted Nations
Network Discovery	Mapping the network topologies through scanning	L II wa in a
Information gathering	IMSI extractions and profile extractions.	 Ukraine NATO Countries Middle east
Location tracking	Performing surveillance on targeted victims.	Africa
Hostile registrations	Hostile location updates made to potentially intercept the comms.	
Account takeover	Social media accounts taken over.	
Fraud	Financial fraud observed several other cases.	

RUSSIAN INFLUENCE IN GLOBAL SIGNALIZATION – RECON AND TARGETED SCANNING

Massive scale scan to discover and map networks.

Multiple networks and countries were scanned. Sequential network identifiers.

No.		Time	Protocol	Length Calling Party Digits	Transaction Id	SubSy:	Called Party Digits	SubSy	info		opCode	application-context-name
	271	202	TCAP	166	30	MSC	37	HLR	Begin otid(30)		shortMsgGatewayContext-v3
	272	202	TCAP	166	30	MSC	37	HLR	Begin otid(30)		shortMsgGatewayContext-v3
	273	202	TCAP	166	31	MSC	46	HLR	Begin otid(31)		shortMsgGatewayContext-v3
	274	202	TCAP	166	31	MSC	46	HLR	Begin otid(31)		shortMsgGatewayContext-v3
	275	202	TCAP	166	32	MSC	52	HLR	Begin otid(32)		shortMsgGatewayContext-v3
	276	202	TCAP	166	32	MSC	52	HLR	Begin otid(32)		shortMsgGatewayContext-v3
	277	202	TCAP	166	33	MSC	54	HLR	Begin otid(33)		shortMsgGatewayContext-v3
	278	202	TCAP	166	33	MSC	54	HLR	Begin otid(33)		shortMsgGatewayContext-v3
	279	202	TCAP	166	34	MSC	95	HLR	Begin otid(34)		shortMsgGatewayContext-v3
	280	202	TCAP	166	34	MSC	95	HLR	Begin otid(34)	Sequential and	shortMsgGatewayContext-v3
	281	202	TCAP	166	35	MSC	10	HLR	Begin otid(35)	incremental session ID	shortMsgGatewayContext-v3
	282	202	TCAP	166	35	MSC	10	HLR	Begin otid(35)		shortMsgGatewayContext-v3
	307	202	TCAP	166	40	MSC	39	HLR	Begin otid(40)		shortMsgGatewayContext-v3
	308	202	TCAP	166	41	MSC	653	HLR	Begin otid(41)		shortMsgGatewayContext-v3
	311	202	TCAP	166	42	MSC	:61	HLR	Begin otid(42)		shortMsgGatewayContext-v3
	310	202	TCAP	166	43	MSC	26	HLR	Begin otid(43)		shortMsgGatewayContext-v3
	309	202	TCAP	166	44	MSC	:53	HLR	Begin otid(44)		shortMsgGatewayContext-v3
	312	202	TCAP	166	45	MSC	64	HLR	Begin otid(45)		shortMsgGatewayContext-v3
	313	202	TCAP	166	46	MSC	'83	HLR	Begin otid(46)		shortMsgGatewayContext-v3
	314	202	TCAP	166	47	MSC	:76	HLR	Begin otid(47)		shortMsgGatewayContext-v3
	283	202	TCAP	166	48	MSC	·07	HLR	Begin otid(48)		shortMsgGatewayContext-v3
	284	202	TCAP	166	48	MSC	07	HLR	Begin otid(48)		shortMsgGatewayContext-v3
	285	202	TCAP	166	49	MSC	:04	HLR	Begin otid(49)		shortMsgGatewayContext-v3
	286	202	TCAP	166	49	MSC	:04	HLR	Begin otid(49)		shortMsgGatewayContext-v3



RUSSIAN INFLUENCE IN GLOBAL SIGNALIZATION – IDENTITY IMPERSONATION

Identity impersonation for social application through account takeover.

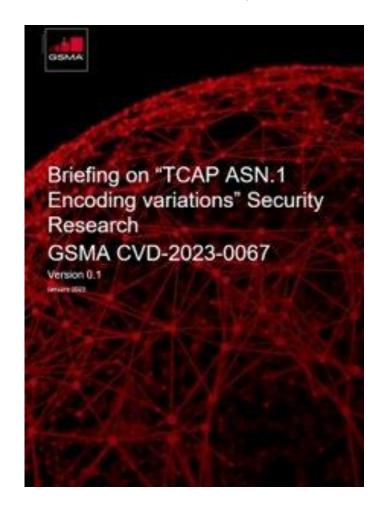
<u> </u>								,	
	No. Time Protocol	Length Calling Party Digits	Tran: SubSy: Called Party Digits	SubSy info	opCode	application-context-name	localValue		
	232 202 GSM MAP	198 7	dd VLR 2	HLR invoke sendAuthenticationInfo	localValue	infoRetrievalContext-v3	sendAuthenticationInfo		
	233 202 GSM MAP	198 7	dd VLR 2	HLR invoke sendAuthenticationInfo	localValue	infoRetrievalContext-v3	sendAuthenticationInfo		Hostile Registration
	234 202 GSM MAP	218 7	19 VLR 2	HLR invoke updateLocation	localValue	networkLocUpContext-v3	updateLocation		
	235 202 GSM MAP	218 7	19 VLR 2	HLR invoke updateLocation	localValue	networkLocUpContext-v3	updateLocation		
	238 202 GSM MAP	350 2	00 HLR 7	VLR invoke insertSubscriberData	localValue	networkLocUpContext-v3	insertSubscriberData		
	239 202 GSM MAP	350 2	00 HLR 7	VLR invoke insertSubscriberData	localValue	networkLocUpContext-v3	insertSubscriberData		
	240 202 GSM MAP	150 7	dd VLR 2	HLR invoke sendAuthenticationInfo	localValue		sendAuthenticationInfo		Home network shares
	241 202 GSM MAP	150 7	dd VLR 2	HLR invoke sendAuthenticationInfo	localValue		sendAuthenticationInfo		user profile to malicious
	244 202 GSM MAP	150 7	dd VLR 2	HLR invoke sendAuthenticationInfo	localValue		sendAuthenticationInfo		•
	245 202 GSM MAP	150 7	dd VLR 2	HLR invoke sendAuthenticationInfo	localValue		sendAuthenticationInfo		source
	250 202 GSM MAP	350 2	00 HLR 7	VLR invoke insertSubscriberData	localValue		insertSubscriberData		
	251 202 GSM MAP	350 2	00 HLR 7	VLR invoke insertSubscriberData	localValue		insertS <mark>ubscriberData</mark>		
	256 202 GSM SMS	354 2	16 MSC 7	MSC invoke forwardSM	localValue	shortMsgMT-RelayContext-v2	mo-forwardSM		2FA token access
	257 202 GSM SMS	354 2	16 MSC 7	MSC… invoke forwardSM	localValue	shortMsgMT-RelayContext-v2	mo-forwardSM		ZI A LOKETI decess

RUSSIAN INFLUENCE IN GLOBAL SIGNALIZATION – IDENTITY SPOOFING

How we back our statement that these are nation backed activities.

No.	Time Protocol			SubSy: Called Party Digits	SubSyst info		pCode	application-context-name		localValue	
	1 202 GSM SMS	283 3	00… Unitdata	MSC	MSC invoke for	rwardSM 1	ocalValue			_	mo-forwardSM
		SCCP layer Spoo	fed Identity								Spoofed E.164 numbering plan doesn't
Г	∨ Message Tr	ransfer Part Lev	el 3								belong to any of Operators that owns these low layer identities
	> Service	information oc	tet							L	
	∨ Routing	label									
	>		01 0110 0	0101 0011 = DPC	:						
	×	1000 0011 0011	11	= OPC	:						
	Si	ignalling Area M	letwork Code	e (SANC): Afgha	nistan <mark>- L</mark> o	w layer Spool	fed Identity				
	Ur	nique Signalling	g Point Name	:							
	Si	ignalling Point	Operator Na	ame:							
L	0000			= Sig	nalling Lin	k Selecto	r: 0				
1	✓ Message Tr	ansfer Part Lev	vel 3						ך ו		k Level analysis revealed traffic iated via Russian operator
	> Service	information oc	tet								
	∨ Routing	label									
	>		10 1111	$0000 \ 1011 = D$	PC:						
		1000 0111 1000									
	Si	ignalling Area	Network Cod	e (SANC): Unit	ed Arab Emi	irates <mark>- I</mark>	_ow layer Spo	ofed Identity			
	Ur	nique Signallin	g Point Nam	ie:							
	Si	ignalling Point	Operator N	ame:							
	0000			···· = S:	ignalling L	ink Selec	tor: 0				

RUSSIAN INFLUENCE IN GLOBAL SIGNALIZATION – ZERO-DAY EXPLOITS



- CVD submitted and under final review.
- Plans to releases the briefing paper by Q1 2023.

Actions towards Mobile Operators

 Mobile Operators are requested to reproduce this vulnerability in their labs once the briefing paper is published.

Coordinated Vulnerability Disclosure

"THE FINANCIAL IMPACT"

Financial loss towards operators for zero-day exploit!

The Mobileum Threat Intelligence team discovered a new vulnerability back in early April 2021

	General Details
Operator(s)	Unknown
Date of Threat	2021/03/31- 2021/04/01
Date of Reporting	2021-04-09
Threat Originating Network	SCCP Calling GT prefixes: Unknown:
Threat Originating Node(s)	SCCP Calling GTs:
Protocol	SS7, MAP, SMS
Messages	PDU_SS7_MAP_sendRoutingInfoForSM , PDU_SS7_MAP_mo-forwardSM, PDU_SS7_MAP_mt-forwardSM

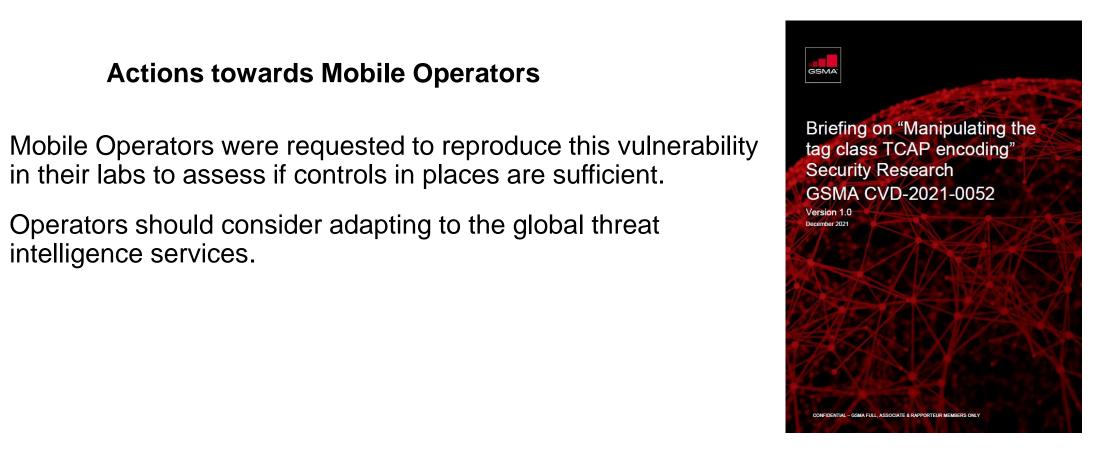
A global operator group reported a fraud incident between April and Nov 2021 that exploited that vulnerability

Dates of fraud incident/s:	April to November 2021						
Estimated Loss in US\$:	\$48K in 12 days						
How fraud committed. Method of fraud – what did they do? Attached diagrams on separate page if required.	An affiliate was victim of SMS Firewall Bypass where the fraudsters manipulated the SMS signaling while hiding behind a leased GT. The SMS signaling manipulation allowed the SRI-for-SM message to be routed directly to the HLR instead of the SMS Firewall and involved manipulating the TCAP TAG parameter of this message, a technique previously reported: see CVD-2021-0052.						
Details of fraudsters: Any information that may assist another operator to identify the fraudsters	The GT used to commit this fraud was leased from another affiliate on the pretense that it was required by the national police. We don't know it our affiliate received the GT leasing request from fraudsters who impersonated the authorities or from the legitimate authorities.						

Overall financial impact of this zero-day is not fully known.

- This can be due to factors like lack of visibility.
- Lack of interest in reporting such incident towards GSMA.

RESPONSIBLE VULNERABILITY DISCLOSURE


Actions towards Mobile Operators

in their labs to assess if controls in places are sufficient.

Operators should consider adapting to the global threat

Coordinated Vulnerability Disclosure

https://www.gsma.com/security/gsma-mobile-security-research-acknowledgements/

٠

intelligence services.

"WORK ETHICS & DISCLOSURE"

© 2023 Mobileum, Inc. All rights reserved. Contains Confidential and Proprietary Information of Mobileum, Inc.

WORK ETHICS AND DISCLOSURE

Coordinated Vulnerability Disclosures

- Share key intelligence gathered through security research back to the Industry.
- Share details on zero day exploits that can avoid security breaches and financial losses.
- Objective driven to secure services offered by operators.

GSMA Briefing on "TCAP ASN.1 Encoding variations" Security Research GSMA CVD-2023-0067 Version 0.1

Briefing on "Manipulating the tag class TCAP encoding" Security Research GSMA CVD-2021-0052 Version 1.0 December 2021

What further actions can be taken?

- Industry should learn from enterprise and build a telecom focus intel sharing framework. Like (STIX, TAXI)
- Build and create culture of resilience in an organization.
- Processes are key to the implementation of an effective cybersafety strategy to handle cyber conflicts.
- Security guidelines are not a measure of absolute security.
- Operators to enable themselves with a mindset of Global Threat Intelligence

THANK YOU

Q & A