

Security of Service

Rob Evans JANET(UK)

What this talk is about

- Our experiences of building a resilient network.
- Securing the supply of a service.

What this talk isn't about

- Title is a legacy from the conference it was first presented at. This isn't about:
 - Privacy
 - Intrusion Detection
 - CSIRT-type "Stuff"
- · There's more than one way to skin a cat
 - Your network may be bigger and more resilient than ours.

What we had

- SuperJANET4, launched in 2001
- Succeeded in breaking out of the cycle of bandwidth-limited backbones of previous years
- Good capacity
- Resilient
- ...but had some weak spots

What we had

- Sites connected to Regional Networks
- Regional Networks connected to backbone
 - From 622Mbit/s to 2.5Gbit/s
 - Mainly protected SDH
 - Some Gigabit Ethernet (intra-room)
- Backbone highly resilient
- RN links less so

RN link resilience

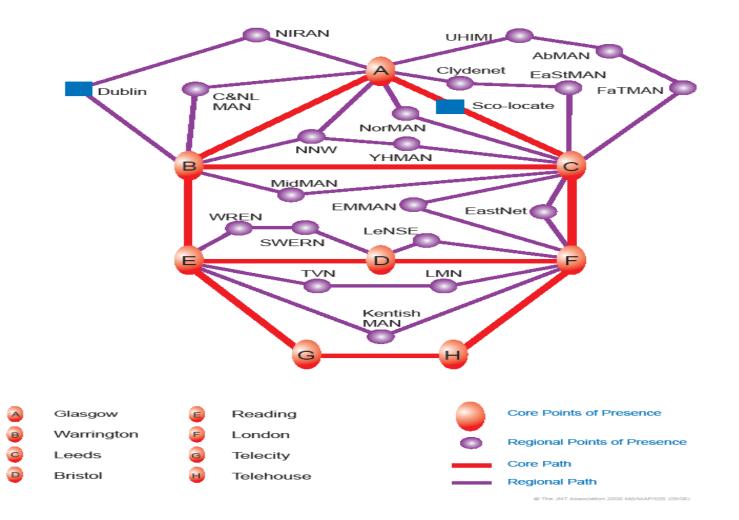
- Protected SDH links.
 - Good, yes?
- Better than unprotected bits of fibre.
- But:
 - Single router on the backbone
 - Single router at the RN
 - Lots of scope for the telco to reroute and lose resilience.
 - You only find out the protect path isn't working when you need it.

What we wanted

- Greater resilience for Regional Network links
 - Link failure takes off many sites.
- Increased agility for bringing extra circuits up
 - Capacity
 - Bandwidth channels for research work

Security against...

Photo courtesy of HEAnet


Copyright JNT Association 2007

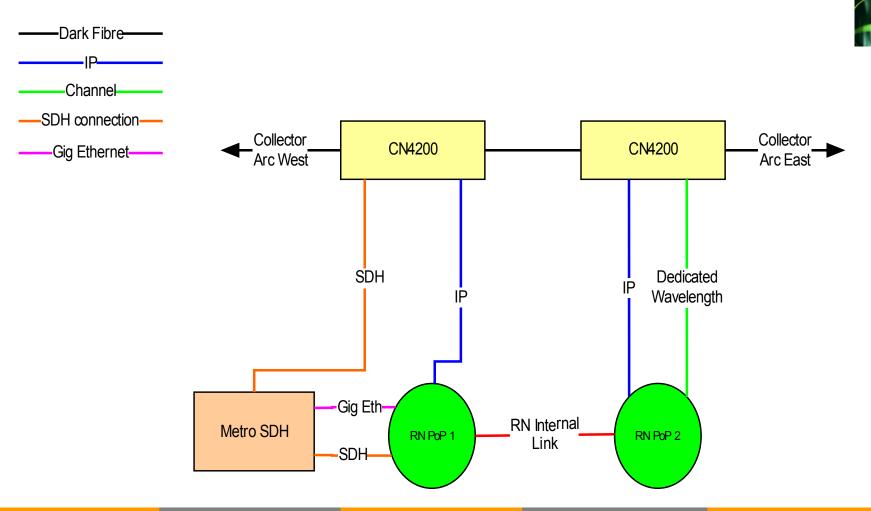
UKNOF 8, London.

SJ5 Architecture

Basics

- Dedicated fibre and DWDM equipment
 - Not subject to requirements of other customers
- Ciena CoreStream at the core PoPs
- Ciena 4200 for the "collector arcs"

Regional Connections



- All Regional Networks have two diverse fibre connections to the backbone
 - Same capacity to ensure full resilience
 - Two different regional network PoPs
 - Two different Core PoPs

Regional Connections

UKNOF 8, London.

Problems

- Finding truly diverse fibre

 Even in metro areas
- Are two fibres in the same duct diverse?
 - How about the same trench?
 - Opposite sides of the road?
 - Parallel roads?
- Is the information accurate...

Fibre Routing

Photo from http://www.flickr.com/photos/samjudson/

Fibre Routing

Photo from http://www.flickr.com/photos/samjudson/

- Mandated SDH for Regional Network connections to the backbone
 - SDH notices faults, brings down interface, triggers IP routing changes
 - BFD not mature and widely deployed
 - Ethernet OAM not yet available
 - No SDH "ring" for optical protection
 - Quick failover essential for streaming media
- Complaints about cost required central funding for RN interfaces.

Core and Regional

- Regional Networks have previously had great autonomy in designing their own networks
 - Mismatch between services offered on core and on RN.
 - Difficult to roll out new services
 - Backbone has been IPv4/IPv6 dual stack since 2003.
 - Some RNs still aren't (but will be soon as it is coming into the SLA)

Core and Regional

- Introducing a "Technical Design Authority"
- Works with all the Regional Networks on their design and procurement.
- Ensure consistent access to new services
 - IPv6
 - Lightpaths

Core: Bandwidth

- Single large pipes rather than loadsharing over smaller circuits.
 - Simpler
 - Currently still 10Gbit/s
 - One trial link at 40Gbit/s
 - Backbone-wide within a couple of years
 - Hopefully.
 - PMD is SEP (sorta)

Core: Bandwidth

- Separate large or disruptive flows out onto dedicated channels
 - "Lightpaths"
 - Not only high bandwidth, but also specialist requirements
 - Large Hadron Collider, CERN
 - Separate the requirements of a research network from the need to run a highly available IP service for the rest of the customers

Core: Bandwidth

- Add additional channels at marginal cost
 - Fixed price between any two core PoPs
 - Proven useful for external connectivity
 - Also being used to provide GEANT (network linking R&E networks across Europe) with additional capacity to Dublin

Core: Routers

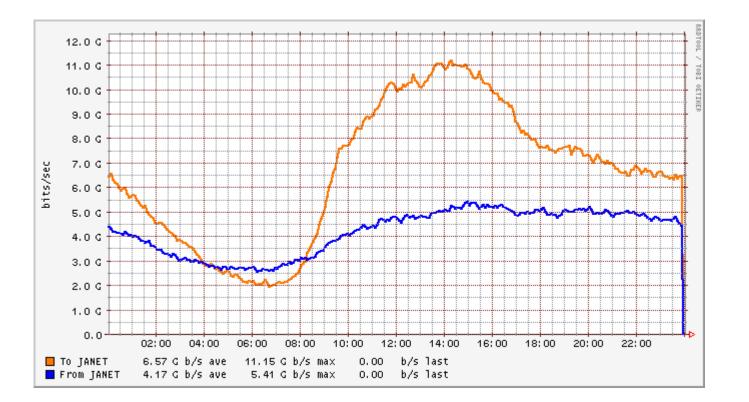
- Reduced number of routers on core
 - SJ4 differentiated between "core" and "access" routers
 - Required due to functionality of routing equipment when it was designed
 - Difficult to do filtering and high-speed routing at the same time
 - Also useful for link monitoring. JANET router at the remote end of each link.

- SJ5 collapses both functions onto the backbone routers
 - Fewer boxes to manage and upgrade
 - More than 20 fewer routers in SJ5
- Use optical equipment for link monitoring
- Still a few wrinkles
 - Sampled netflow (1/10) on 10Gbit/s+ hard to do with current equipment

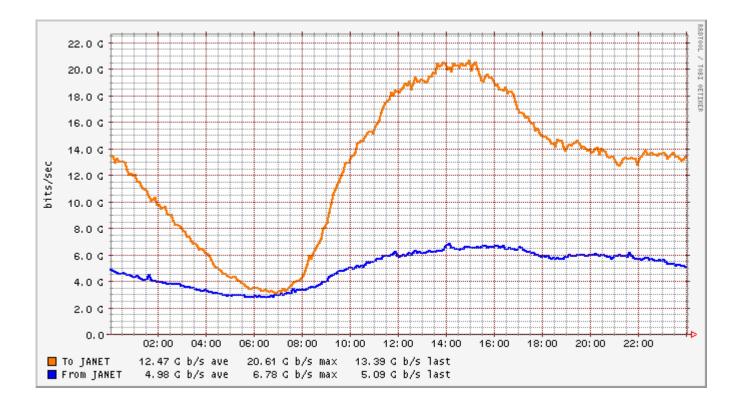
External connectivity

- Two locations in London's Docklands
 - Difficult to get high-speed transit elsewhere
 - Even if you do, it is usually long-lined from Docklands
- Each site has 10Gbit/s to two backbone nodes
- Required bandwidth growing ahead of 40Gbit/s availability
- In process of upgrading each site with 10G to four backbone nodes.

External Connectivity


- Multiple transit providers in each location
- Different IXP LANs
- Private peerings in both locations
- Primary and backup GEANT connections spread over the two sites

Thursday, May 18^{th,} 2006



Thursday, May 17^{th,} 2007

Operations

- Historically subcontracted to external party
 - University of London Computer Centre
 - If you look out the window on the left-hand side...
- In-house as of January 1st, 2007.
 - Reduce risk
- Still based in London
 - Main JANET office is near Oxford
 - but...

Operations

- Just built a new Network Operations Centre
 - Redundant access circuits to diverse backbone PoPs
 - UPS & Diesel generator
 - >20 hours before refuelling
- Second emergency NOC across river
 - Different electrical supplies, access circuits, etc.
- Service Desk phone number can be directed to Oxford or London as needed

Some statistics

- 5,851 Km of dark fibre
- 90 circuits (60 at 10Gbit/s)
- 112 sites housing optical equipment
- Longest unregenerated link: 554 Km
- Longest single span: 243.6 Km, 51.2 dB loss

Still one problem to solve

• Operator error

• Questions?