DNSSEC made easy

Jay Daley

DNSSEC made easy The theory

nominet

The need for DNSSEC

nominet

DNS has weak inbuilt security

- ID field, 16 bit integer, returned in reply.
 - Some implementation use 14 bits
 - Multiple queries allow "birthday attack"
 - 16,384 packets is not a lot
- UDP generally preferred over TCP
 - No source address validation
 - Authoritative server addresses well known
- Spoofing data is hard to detect
 - Not much monitoring of DNS server caches
 - Increasingly targetted

A solution

nominet

DNSSEC adds security to DNS

- Authoritative server replies now signed.
 - Queries <u>not</u> signed one way security.
- Keys published in zones like other data.
 - New DNS RR types for keys, signatures (and others) specific to DNSSEC.
- All sorts of usual stuff
 - Expiry dates for keys and signatures
 - Key rollover mechanisms
 - Support for different algorithms

Signatures

New DNS resource record RRSIG

- Sent automatically to DNSSEC aware resolvers
 - Flagged by setting D0 bit in query
- One per RRSET
 - RRSET has same owner, class and type
- Not used for NS records (more on that later)

```
$ORIGIN internet.co.uk.

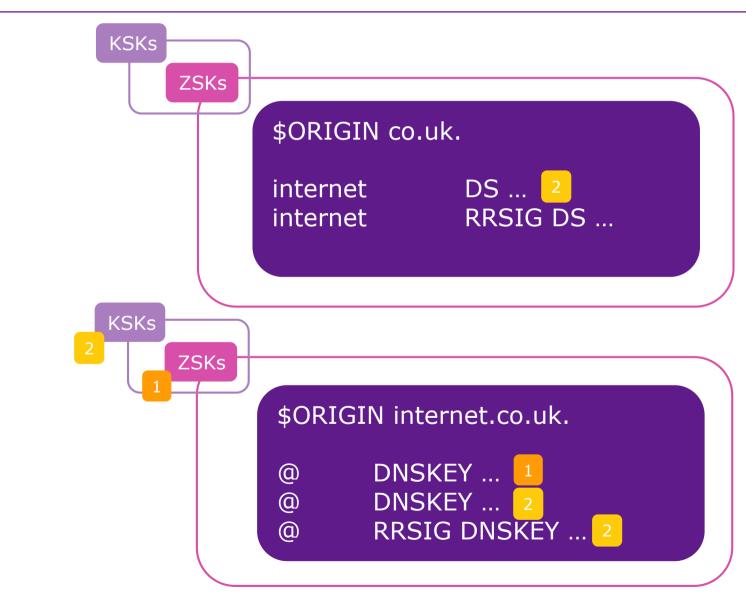
SOA ...
RRSIG SOA ...

WWW A ...
A ...
RRSIG A ...
```

New DNS resource record DNSKEY

- Two types of keys (convention not protocol):
 - Zone Signing Keys (ZSKs) used to sign zone data
 - short, fast signature verification, short lifetime
 - Key Signing Keys (KSKs) used to sign KSKs
 - long, long signature verification, long lifetime

\$ORIGIN internet.co.uk.


DNSKEY 256 3 5 (AQOeiiR0GOMYkDshWoSKz9Xzfw Jr1AYtsmx3TGkJaNXVbfi/2pHm822aJ5iI9BM zNXxeYCmZDRD99WYwYqUSdjMmmAphXdv xegXd/M5+X7OrzKBaMbCVdFLUUh6DhweJBj EVv5f2wwjM9XzcnOf+EPbtG9DMBmADjFDc2 w/rljwvFw==); key id = 60485

Delegations

Trust passes from parent and child zones

- Reminder on delegation data
 - Child is authoritative <u>not</u> parent
 - If NS records disagree then child wins
 - Parent data is just a hint
- DNSSEC handles delegations to fit these principles
 - NS records are not signed
 - New DNS resource record DS (Delegation Signer)
 - Hash of child DNSKEY record data
 - Signed itself by an RRSIG
- Passes right way up to the root zone
 - Root zone keys must be implicitly trusted.

The chain of trust

Provable non-existence

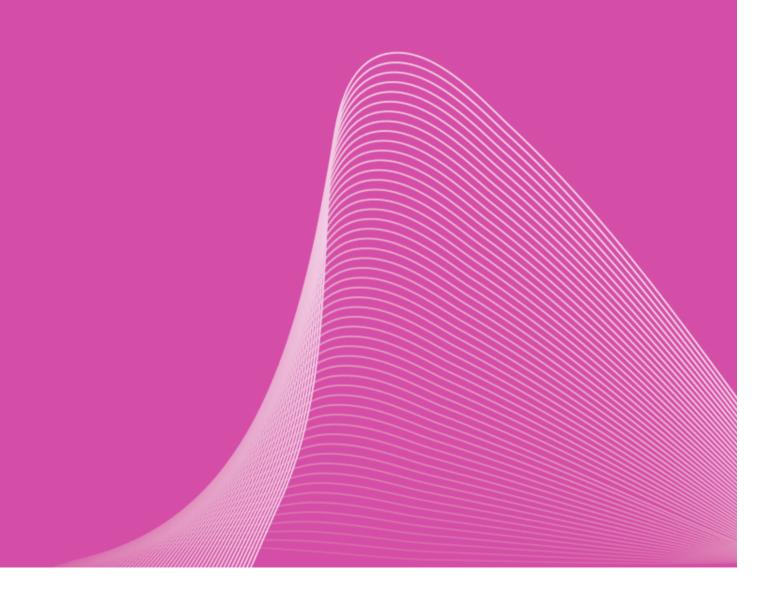
Two new DNS resource records - NSEC and NSEC3

- Define a span two adjacent existing names
 - Zone file contains <u>aaa</u> and <u>ccc</u>, client asks for <u>bbb</u>
 - Server responds with NSEC for <u>aaa</u> to <u>ccc</u>
 - Proves that bbb does not exist

```
$ORIGIN internet.co.uk.

aaa A ...
RRSIG A ...
NSEC ccc ...
RRSIG NSEC ...

ccc A ...
```


Recent RFCs

Tackle implementation issues

- Zone file walking
 - Using NSECs can walk a zone file
 - If privacy is not an issue then bandwidth is!
- NSEC3 used instead of NSEC where needed
 - Spans of hashed names
- Huge increase in zone file size
 - Immediate 10x size increase
- Opt-out allows choice of signed delegations
 - No child key no security on delegation
 - Allows organic zone file growth
- Not quite finished Automated root zone key rollover

DNSSEC made easy
The practice

nominet

Using secured incoming DNS data

Putting into practice simpler than understanding theory

- Caveat Not all of this is possible yet
- Securing caching resolvers
 - Find and install root zone keys (if only!)
 - Turn on DNSSEC
 - Done!!
- Securing applications at the OS level
 - Turn on DNSSEC in resolver library
 - Backwards compatibility Use DNSSEC if present, otherwise work as before. (Now)
 - Strict DNSSEC Only use DNSSEC, unsigned records discarded. (5 years?)

DNSSEC made easy

nominet

Securing outgoing DNS data

This requires planning

- Generate keys
 - Choices on key sizes KSKs, ZSKs, size etc
 - Choices on securing keys HSMs, silo keys etc
- Sign the zones
 - Choices on mechanism crypto accelerators
 - Choices on signature lifetimes resigning timetable
 - Choices on delegations sign all or opt-out
- Resource planning
 - 10x zone file increase
 - Higher bandwidth
 - More TCP to nameserver
- Send keys to registry

Best practice tips

We are writing documents on this!

- Signing schedules
 - Ensure always a current signature
 - Match zone generation/reload schedule
 - Implement continuous signing if zones not reloaded
- Ensure always active keys
 - Key rollover strategy
 - Schedule transmission of keys to registry
- If you delegate zones as well
 - Mechanism for receiving keys
 - Manage growth of zones

nominet DNSSEC made easy The politics

Current DNSSEC deployment

Some early adopters

- Isolated trust anchors
 - Individual registries have signed their zones
 - .se, .pr, RIPE
 - Sysadmins must manually find and install keys
 - No automated key rollover manual process
- Does not scale
 - Whole point of DNS is a single root!
- Others insistent they will not sign yet
 - .uk, .de zone walking solution
 - .com opt-out

Two different camps on signing the root

- Camp one the 'hidden agenda' brigade
 - US DoC will have too much control
 - Signatures have a special meaning
 - Needs a new body to manage root signing
- Camp two the 'just get on with it' brigade
 - US DoC already has control changes nothing
 - Signatures are just error checking
 - IANA and RZM (Verisign) already control this
- Where is this going?
 - Root politics already difficult
 - IANA now ready to do this (taking over RZM function?)
 - US DoC NTIA consulting on way forward

Remember

- DNSSEC is coming
 - Internet must be secured in layers DNS layer is critical
- Protocol is a lot to learn but straightforward
- Implementation has two parts
 - Securing incoming DNS data simple
 - Securing outgoing DNS data requires planning
- And by the time you are ready
 - They might have signed the root!

nominet DNSSEC made easy The end Questions? jay@nominet.org.uk